Exploring post-quantum cryptography in Internet protocols

https://eprint.iacr.org/2019/858

https://eprint.iacr.org/2019/1356

https://eprint.iacr.org/2019/1447

https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-02

https://openquantumsafe.org/

https://github.com/open-quantum-safe/

https://www.douglas.stebila.ca/

Netherlands Crypto Working Group • 2020-02-07

Guatamala

CYBER SECURITY AND PRIVACY

Labrador Sea

UNIVERSITY OF WATERLOO

Overview

- Design issues in adding hybrid key exchange to Internet protocols
- Open Quantum Safe project
- Compatibility issues of post-quantum & hybrid key exchange and authentication in SSH and TLS
- Performance of post-quantum & hybrid key exchange and authentication in TLS

"Hybrid"

"Hybrid" or "composite" or "dual" or "multialgorithm" cryptography

- Use pre-quantum and postquantum algorithms together
- Secure if either one remains unbroken

Why hybrid?

- Potential post-quantum security for early adopters
- Maintain compliance with older standards (e.g. FIPS)
- Reduce risk from uncertainty on PQ assumptions/parameters

Hybrid ciphersuites

	Key exchange	Authentication	
	i toy ononingo		Likoby footio
1	Hybrid traditional + PQ	Single traditional for	Likely focus next 5-10 years
2	Hybrid traditional + PQ	Hybrid traditional + PQ	
	,	,	
3	Single PQ	Single traditional	
4	Single PQ	Single PQ	

• Need PQ key exchange before we need PQ authentication because future quantum computers could retroactively decrypt, but not retroactively impersonate

Hybrid key exchange and authentication to date

- Hybrid key exchange Internet-Drafts at IETF:
 - TLS 1.2: Schanck, Whyte, Zhang 2016; Amazon 2019
 - TLS 1.3: Schanck, Stebila 2017; Whyte, Zhang, Fluhrer, Garcia-Morchon 2017; Kiefer, Kwiatkowski 2018; Stebila, Fluhrer, Gueron 2019/20
 - IPsec / IKEv2: Tjhai, Thomlinson, Bartlet, Fluhrer, Geest, Garcia-Morchon, Smyslov 2019
- Hybrid key exchange experimental implementations:
 - Google CECPQ1, CECPQ2; Open Quantum Safe; CECPQ2b; ...
- Hybrid X.509 certificates:
 - Truskovsky, Van Geest, Fluhrer, Kampanakis, Ounsworth, Mister 2018

Design issues for hybrid key exchange in TLS 1.3

Douglas Stebila, Scott Fluhrer, Shay Gueron. **Hybrid key exchange in TLS 1.3**. **Internet-Draft**. Internet Engineering Task Force, February 2020. <u>https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-02</u>

Goals for hybridization

1. Backwards compatibility

- Hybrid-aware client, hybrid-aware server
- Hybrid-aware client, non-hybrid-aware server
- Non-hybrid-aware client, hybrid-aware server
- 2. Low computational overhead
- 3. Low latency
- 4. No extra round trips
- 5. No duplicate information

Design options

- How to negotiate algorithms
- How to convey cryptographic data (public keys / ciphertexts)
- How to combine keying material

Negotiation: How many algorithms?

Done in all(?) implementations to date.

_ __ __

> 2

Negotiation: How to indicate which algorithms to use

Negotiate each algorithm individually

- 1. Standardize a name for each algorithm
- 2. Provide a data structure for conveying supported algorithms
- 3. Implement logic negotiating which combination

Negotiate pre-defined combinations of algorithms

- 1. Standardize a name for each desired combination
- Can use existing negotiation data structures and logic

Done in Amazon s2n TLS 1.2

Done in all(?) other implementations to date

Which option is preferred may depend on how many algorithms are ultimately standardized.

Conveying cryptographic data (public keys / ciphertexts)

1) Separate public keys

- For each supported algorithm, send each public key / ciphertext in its own parseable data structure
- Done in Amazon s2n TLS 1.2

2) Concatenate public keys

- For each supported combination, concatenate its public keys / ciphertext into an opaque data structure
- Done in all other implementations to date.

#1 requires protocol and implementation changes

#2 abstracts combinations into "just another single algorithm" But #2 can also lead to sending duplicate values

- nistp256+bike1l1
- nistp256+sikep403
- nistp256+frodo640aes
- sikep403+frodo640aes

3x nistp256, 2x sikep403, 2x frodo640aes public keys

Combining keying material

Top requirement: needs to provide "robust" security:

- Final session key should be secure as long as at least one of the ingredient keys is unbroken
- (Most obvious techniques are fine, though with some subtleties; see Giacon, Heuer, Poettering PKC'18, Bindel et al. PQCrypto 2019,)

- XOR keys
- Concatenate keys and use directly
- Concatenate keys then apply a hash function / KDF
- Extend the protocol's "key schedule" with new stages for each key
- Insert the 2nd key into an unused spot in the protocol's key schedule

Draft-00 @ IETF 104

draft-stebila-tls-hybrid-design-00

Contained a "menu" of design options along several axes

- 1. How to negotiate which algorithms?
- 2. How many algorithms?
- 3. How to transmit public key shares?
- 4. How to combine secrets?

Feedback from working group:

- Avoid changes to key schedule
- Present one or two instantiations
- Specific feedback on some aspects

Draft-01 @ IETF 105

draft-stebila-tls-hybrid-design-01

Kept menu of design choices

Constructed two candidate instantiations from menu for discussion

- 1. Directly negotiate each hybrid algorithm; separate key shares
- Code points for pre-defined combinations; concatenated key shares

Additional KDF-based options for <u>combining keys</u>

Draft-02 February 2020

draft-stebila-tls-hybrid-design-02

Number of algorithms:

• 2

Negotiation:

• Negotiate pairs of algorithms in combination

Draft-02 February 2020

draft-stebila-tls-hybrid-design-02

Conveying public keys:

- Concatenated public keys
 - But with length encoding
 - Since some algorithms don't have fixed-length public keys / ciphertexts

Combining keying material:

- Concatenate shared secrets then put into TLS 1.3 key schedule
 - Key schedule applies HKDF.Extract
- No length encoding
- Will be approved by NIST in
 - upcoming revision of SP-800-56C

Open questions

- Still some debate about negotiation and using concatenate public keys / ciphertexts
- Is it safe to use an IND-CPA KEM for ephemeral key exchange in TLS 1.3?
 - Intuitively, seems like it should be safe for **one-time** use keys
 - Some implementations re-use ephemeral keys which wouldn't match IND-CPA
 - But proofs of signed ephemeral DH in TLS 1.2 used an interactive assumption (PRF-ODH) rather than a standard assumption (DDH) (JKSS, C'12); was later shown to be necessary (KraPatWee, C'13)
 - Proofs of signed-DH in TLS 1.3 (BFG<u>S</u> CCS'15, ...) also use PRF-ODH; no analysis of whether this is necessary, no generalization to KEMs)

OPEN QUANTUM SAFE

software for prototyping quantum-resistant cryptography

Open Quantum Safe Project Apache Open nginx Chromium Use in applications links VPN httpd **OpenSSL** Language Integration into forks of • TLS 1.2 Open SDKs BoringSSL widely used open-Standalone C • TLS 1.3 SSH C#. C++. source projects Go, Python • CMS reference implementations, C language library, heavily tested liboqs common API x86/x64 (Linux, Mac, • Windows) ARM (Android, ٠ Linux) key exchange / KEMs signatures **PQClean** multi-variate hash-based / isogenies code-based lattice-based polynomial symmetric

OQS team

- Project leads
 - Douglas Stebila (Waterloo)
 - Michele Mosca (Waterloo)
- Industry collaborators
 - Amazon Web Services
 - Cisco Systems
 - evolutionQ
 - IBM Research
 - Microsoft Research
- Individual contributors

- Financial support
 - Government of Canada
 - NSERC Discoverry
 - Tutte Institute
 - \circ Amazon Web Services
- In-kind contributions of developer time from industry collaborators

liboqs

- C library with common API for post-quantum signature schemes and key encapsulation mechanisms
- MIT License
- Builds on Windows, macOS, Linux; x86_64, ARM v8

- 50 key encapsulation mechanisms from 9 NIST Round 2 candidates
- 52 signature schemes from 5 NIST Round 2 candidates

List of algorithms

Key encapsulation mechanisms

- BIKE: BIKE1-L1-CPA, BIKE1-L3-CPA, BIKE1-L1-FO, BIKE1-L3-FO
- FrodoKEM: FrodoKEM-640-AES, FrodoKEM-640-SHAKE, FrodoKEM-976-AES, FrodoKEM-976-SHAKE, FrodoKEM-1344-AES, FrodoKEM-1344-SHAKE
- **Kyber**: Kyber512, Kyber768, Kyber1024, Kyber512-90s, Kyber768-90s, Kyber1024-90s
- **LEDAcrypt:** LEDAcryptKEM-LT12, LEDAcryptKEM-LT32, LEDAcryptKEM-LT52
- NewHope: NewHope-512-CCA, NewHope-1024-CCA
- NTRU: NTRU-HPS-2048-509, NTRU-HPS-2048-677, NTRU-HPS-4096-821, NTRU-HRSS-701
- **SABER**: LightSaber-KEM, Saber-KEM, FireSaber-KEM
- SIKE: SIDH-p434, SIDH-p503, SIDH-p610, SIDH-p751, SIKE-p434, SIKE-p503, SIKE-p610, SIKE-p751, SIDH-p434-compressed, SIDH-p503-compressed, SIDH-p610-compressed, SIDH-p751-compressed, SIKE-p434-compressed, SIKE-p503-compressed, SIKE-p610-compressed, SIKE-p751-compressed
- ThreeBears: BabyBear, BabyBearEphem, MamaBear, MamaBearEphem, PapaBear, PapaBearEphem

Signature schemes

- **Dilithium**: Dilithium2, Dilithium3, Dilithium4
- MQDSS: MQDSS-31-48, MQDSS-31-64
- **Picnic**: Picnic-L1-FS, Picnic-L1-UR, Picnic-L3-FS, Picnic-L3-UR, Picnic-L5-FS, Picnic-L5-UR, Picnic2-L1-FS, Picnic2-L3-FS, Picnic2-L5-FS
- **qTesla**: qTesla-p-I, qTesla-p-III
- SPHINCS+-Haraka: SPHINCS+-Haraka-128f-robust, SPHINCS+-Haraka-128f-simple, SPHINCS+-Haraka-128s-robust, SPHINCS+-Haraka-128s-simple, SPHINCS+-Haraka-192f-robust, SPHINCS+-Haraka-192f-simple, SPHINCS+-Haraka-192s-robust, SPHINCS+-Haraka-192s-simple, SPHINCS+-Haraka-256f-robust, SPHINCS+-Haraka-256f-simple, SPHINCS+-Haraka-256s-robust, SPHINCS+-Haraka-256s-simple
- SPHINCS+-SHA256: SPHINCS+-SHA256-128f-robust, SPHINCS+-SHA256-128f-simple, SPHINCS+-SHA256-128srobust, SPHINCS+-SHA256-128s-simple, SPHINCS+-SHA256-192f-robust, SPHINCS+-SHA256-192f-simple, SPHINCS+-SHA256-192s-robust, SPHINCS+-SHA256-192s-simple, SPHINCS+-SHA256-256f-robust, SPHINCS+-SHA256-256fsimple, SPHINCS+-SHA256-256s-robust, SPHINCS+-SHA256-256s-simple
- SPHINCS+-SHAKE256: SPHINCS+-SHAKE256-128f-robust, SPHINCS+-SHAKE256-128f-simple, SPHINCS+-SHAKE256-128srobust, SPHINCS+-SHAKE256-128s-simple, SPHINCS+-SHAKE256-192f-robust, SPHINCS+-SHAKE256-192f-simple, SPHINCS+-SHAKE256-192s-robust, SPHINCS+-SHAKE256-192ssimple, SPHINCS+-SHAKE256-256f-robust, SPHINCS+-SHAKE256-256f-simple, SPHINCS+-SHAKE256-256s-robust, SPHINCS+-SHAKE256-256s-simple

23

PQClean

- Sister project to OQS
- Goal: standalone, high-quality C reference implementations of PQ algorithms
 - Lots of automated code analysis and continuous integration testing
 - Builds tested on little-endian and big-endian
- MIT License and public domain

- Not a library, but easy to pull out code that can be incorporated into a library
 - liboqs consumes implementations from PQClean
- In collaboration with Peter
 Schwabe and team at Radboud
 University, Netherlands

https://github.com/PQClean/PQClean

OpenSSL

- OQS fork of OpenSSL 1.0.2
 - PQ and hybrid key exchange in TLS 1.2
- OQS fork of OpenSSL 1.1.1
 - PQ and hybrid key exchange in TLS 1.3
 - PQ and hybrid certificates and signature authentication in TLS 1.3
 - PQ and hybrid signatures in Cryptographic Message Syntax (CMS)
- Can be readily used with applications that rely on OpenSSL with few/no modifications

OQS demo: OpenSSL

• • •	buik — bin/links / Jsers/dstebila/Desktop/build — links https://localhost:4433/ — 109×32		Ubuntu 18.04 Bi	ionic (Fresh install, apt upgrade as of 2018/11/05) [Running]	
ECDH-RSA-DES-CB	IC3-SHA ECDT=ECDSA-DES-CBC3-SHA DES-CBC3-SHA	(p4 of 5) 🗏 A	ctivities 🖾 Terminal 🔻	Thu 23:12	🛃 📢 🕑 👻
	ithms: RSA+SHA512:DSA+SHA512:ECDSA+SHA512:RSA+SHA384:DSA+SHA384:ECDSA+SHA38	4:RSA+SHA256:DSA+S		dstebila@ds-ubuntu18: ~/Desktop/install	۵ 🖻
Shared Signatur	e Algorithms: RSA+SHA512:DSA+SHA512:ECDSA+SHA512:RSA+SHA384:DSA+SHA384:ECDS	A+SHA384:RSA+SHA25	File Edit View Search Terminal	Нер	
	<pre>tic Curves: P-256:P-521:brainpoolP512r1:brainpoolP384r1:P-384:brainpoolP256 curves: P-256:P-521:brainpoolP512r1:brainpoolP384r1:P-384:brainpoolP256r1:</pre>		detabilade_ubustut?:/Deck	top/install\$ bin/openssl s_server cert rsa.crt	- kou cca kou -u
		Secp250k1.0 571.k	🚽 ww -tls1_2		- Key I Salkey - W
	. Cipher is OQSKEM-DEFAULT-ECDHE-RSA-AES256-GCM-SHA384		Using default temp DH parame ACCEPT	eters	
SSL-Session: Protocol :	TLSv1.2	-	ACCEPT		
	OQSKEM-DEFAULT-ECDHE-RSA-AES256-GCM-SHA384				
Session-ID:	ctx: 01000000				
	27FC5115708287A283348723BB02A7FC135F499E23903AE243419C71CA616F74A7686B23DF	E2AB780F093FEA99DF	? Help		
Key-Arg :					
PSK identit PSK identit	y hint: None		2		
SRP usernam		1	_		
Start Time: Timeout :					
	rn code: 0 (ok)				
	he session cache				
	ne session cache nects (SSL_connect())				
0 client ren	egotiates (SSL_connect())				
	<pre>nects that finished epts (SSL_accept())</pre>				
	egotiates (SSL_accept())				
	epts that finished				
0 session ca 0 session ca					
ок				🛐 🕤 🐙 🚽 🥔 🗐	🛛 🖉 💟 🔇 🖲 Left 📽

BoringSSL

- OQS fork of BoringSSL (which is a fork of OpenSSL)
 - PQ and hybrid key exchange in TLS 1.3
- After a few modifications, can be used with Chromium!

OQS demo: Chromium with BoringSSL talking to Apache

Main origin (non-secure)

▲ https://localhost:4433

This page is not secure (broken HTTPS).

Certificate - Subject Alternative Name missing

The certificate for this site does not contain a Subject Alternative Name extension containing a domain name or IP address.

View certificate

Certificate - missing

This site is missing a valid, trusted certificate (net::ERR_CERT_AUTHORITY_INVALID).

View certificate

Connection - secure connection settings

The connection to this site is encrypted and authenticated using TLS 1.3, oqs_kemdefault, and AES_256_GCM.

Resources - all served securely

All resources on this page are served securely.

OpenSSH

- OQS fork of OpenSSH
 - PQ and hybrid key exchange
 - PQ and hybrid signature authentication

OQS demo: OpenSSH

	Ubuntu 16.04 Xenial (Fresh install, apt upgrade as of 2018/11/05) [Running]		Ubuntu 18.04 Bio	onic (Fresh install, apt upgrade as of 2018/11/05) [Running]	
8 🗢 🖸	Terminal File Edit View Search Terminal Help 📫 🖬 📧 🜒 10:40 PM 🔅	Activitie	s 🖾 Terminal 🔻	Thu 22:40	📇 🐠 🖌 👻
	Terminal File Edit View Search Terminal Help dstebila@ds-ubuntu16:-/Desktop/install\$./run_ssn_client.sh /home/dstebila/Desktop/install/bin/ssh -orkexAlgorithms=ecdh-nistp384-newhope-512-sha384@op enquantumsafe.org -p 2222 10.0.1.29 dstebila@10.0.1.29's password: Last login: Thu Nov 15 22:37:21 2018 from 10.0.2.2 Environment: USER=dstebila LOGNAME=dstebila HOME=/home/dstebila PATH=/usr/bin:/bin:/usr/sbin:/home/dstebila/Desktop/install/bin MAIL=/var/mail/dstebila SHELL=/bin/bash SSH_CLIENT=10.0.2.2 63692 10.0.2.15 2222 SSH_CONNECTION=10.0.2.2 63692 10.0.2.15 2222		File Edit View Search Terminal debug1: sshd version OpenSSH debug1: private host key #0: debug1: private host key #1: 352Q6pBlU debug1: private host key #2: 4	dstebila@ds-ubuntu18: ~/Desktop/install Help 1_7.7, OpenSSL 1.0.2n 7 Dec 2017 5 ssh-rsa SHA256:g2BNb1fBmlJrt1ixRX7ROpsN9gt 6 ecdsa-sha2-nistp256 SHA256:4TK005oShRqFifG 5 ssh-ed25519 SHA256:9jH7ksWKyzh8haL9eAGWHCB 9 /dstebila/Desktop/install/sbin/sshd 6 score_adj from 0 to -1000	● ● ● cuebcq0Px/xPPr0K8 MT7cktV3HTvBnPLZmf/
	Stepila@ds-ubuntu18:-\$		Server listening on 0.0.0.0 debug1: Bind to port 2222 on Server listening on :: port debug1: Server will not fork debug1: next scart in 5 out debug1: inetd sockets after connection from 10.0.2.2 por debug1: Client protocol vers debug1: Client protocol vers debug1: Local version string debug1: permanently_set_uid: debug1: list_hostkey_types: 519 [preauth] debug1: SSH2 MSG KEXINIT see debug1: SSH2 MSG KEXINIT rec	<pre>port 2222.) ::. 2222. : when running in debugging mode. : 5 newsock 5 pipe -1 sock 8 dupping: 3, 3 t 63692 on 10.0.2.15 port 2222 ;ion 2.0; client software version OpenSSH_7. port 0penSSH* compat 0x04000000 0 SSH-2.0-0penSSH_7.7 : 1001/1001 [preauth] ssh-rsa,rsa-sha2-512,rsa-sha2-256,ecdsa-sha : presuth]</pre>	2-nistp256,ssh-ed25 fe.org_preauth]
	2 😳 🕫 😅 🖉 🛄 🥵 🖲 Left 🛪	1			🏹 🚍 🗾 🔐 🔘 🔇 🖲 Left 🗯 ַ

Using OQS

- All open source software available on GitHub
- Instructions for building on Linux, macOS, and Windows
- Docker images available for building and running OQS-reliant applications
 - Apache httpd
 - \circ curl
 - nginx
 - OpenSSH

Prototyping post-quantum and hybrid key exchange and authentication in TLS and SSH

Eric Crockett, Christian Paquin, Douglas Stebila. **Prototyping post-quantum and hybrid key exchange and authentication in TLS and SSH**. In *NIST 2nd Post-Quantum Cryptography Standardization Conference 2019*. August 2019. <u>https://eprint.iacr.org/2019/858</u>

Case study 1: TLS 1.2 in Amazon s2n

- Multi-level negotiation following TLS 1.2 design style:
 - Top-level ciphersuite with algorithm family: e.g. TLS_ECDHE_SIKE_ECDSA_WITH_AES_256_GCM_SHA384
 - Extensions used to negotiate parameterization within family:
 - 1 extension for which ECDH elliptic curve: nistp256, curve25519, ...
 - 1 extension for which PQ parameterization: sikep403, sikep504, ...
- Session key: concatenate session keys and apply KDF with public key/ciphertext as KDF label
- Experimental results: successfully implemented using nistp256+{bike1l1, sikep503}

Case studies 2, 3, 4: TLS 1.2 in OpenSSL 1.0.2 TLS 1.3 in OpenSSL 1.1.1 SSH v2 in OpenSSH 7.9

- Negotiate pairs of algorithms in pre-defined combinations
- Session key: concatenate session keys and use directly in key schedule
- Easy implementation, no change to negotiation logic
- Based on implementations in liboqs
 - KEMs: 9 of 17 (BIKE round 1, FrodoKEM, Kyber, LEDAcrypt, NewHope, NTRU, NTS (1 variant), Saber, SIKE)
 - Signature schemes: 6 of 9 (Dilithium, MQDSS, Picnic, qTesla (round 1), Rainbow, SPHINCS+)

1st circle: PQ only 2nd circle: hybrid ECDH

- = success
- fixable by changing implementation parameter
- = would violate spec or otherwise unresolved error
- † = algorithm on testing branch

BIKE1-L1 (round 1) - BIKE1-L3 (round 1) BIKE1-L5 (round 1) BIKE2-L3 (round 1) BIKE2-L3 (round 1) BIKE2-L5 (round 1) BIKE2-L5 (round 1) BIKE2-L5 (round 1) BIKE3-L3 (round 1) BIKE3-L5 (round 1) BIKE3-L5 (round 1) BIKE3-L5 (round 1) FrodoKEM-640-AES FrodoKEM-976-SHAKE FrodoKEM-976-SHAKE FrodoKEM-1344-AES FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE Vyber512 FrodoKEM-1344-SHAKE LEDAcrypt-KEM-LT-12 [†] LEDAcrypt-KEM-LT-12 [†] Vyber1024 UEDAcrypt-KEM-LT-22 [†] VRWhope-512-CCA NTRU-HPS-2048-607 VTRU-HPS-2048-607 NTRU-HPS-2048-677 <th></th> <th>s2n (TLS 1.2)</th> <th>OpenSSL 1.0.2 (TLS 1.2)</th> <th>OpenSSL 1.1.1 (TLS 1.3)</th> <th>OpenSSH</th>		s2n (TLS 1.2)	OpenSSL 1.0.2 (TLS 1.2)	OpenSSL 1.1.1 (TLS 1.3)	OpenSSH
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BIKE1-L1 (round 1)	- •	••	••	••
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BIKE1-L3 (round 1)		••	••	••
BIKE2-L3 (round 1) BIKE2-L5 (round 1) BIKE3-L3 (round 1) BIKE3-L5 (round 1) BIKE3-L5 (round 1) BIKE3-L5 (round 1) FrodoKEM-640-AES FrodoKEM-976-AES FrodoKEM-1344-AES FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE Kyber512 Kyber768 Kyber1024 LEDAcrypt-KEM-LT-12 [†] LEDAcrypt-KEM-LT-52 [†] VewHope-512-CCA NrRu-HPS-2048-509 NTRU-HPS-2048-509 NTRU-HPS-4096-821 NTRU-HPS-4096-821 NTRU-HPS-4096-821 NTRU-HPS-4096-821 NTRU-HPS-303 (round 1) SiKEp503 (round 1) SiKEp503 (round 1)			• •	••	••
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· /		••	••	••
BIKE3-L1 (round 1) BIKE3-L3 (round 1) BIKE3-L5 (round 1) BIKE3-L5 (round 1) FrodoKEM-640-AES FrodoKEM-976-AES FrodoKEM-976-SHAKE FrodoKEM-1344-AES FrodoKEM-1344-AES FrodoKEM-1344-AES FrodoKEM-1344-SHAKE FrodoKEM-1344-AES FrodoKEM-1344-AES FrodoKEM-1344-AES FrodoKEM-124 Kyber1024 UEDAcrypt-KEM-LT-12 [†] LEDAcrypt-KEM-LT-32 [†] LEDAcrypt-KEM-LT-52 [†] NrRu-HPS-2048-509 NTRU-HPS-2048-677 NTRU-HPS-2048-677 NTRU-HPS-2048-677 NTRU-HPS-2048-677 NTRU-HPS-2048-677 NTRU-HPS-2048-677 NTRU-HPS-2048-677 NTRU-HPS-2048-677 SlKEp503 (round 1) <			• •	• •	••
BIKE3-L3 (round 1) BIKE3-L5 (round 1) FrodoKEM-640-AES FrodoKEM-640-SHAKE FrodoKEM-976-AES FrodoKEM-1344-AES FrodoKEM-1344-AES FrodoKEM-1344-SHAKE FrodoKEM-1344-AES FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE Kyber512 FrodoKem-1344-SHAKE Kyber1024 UEDAcrypt-KEM-LT-12 [†] LEDAcrypt-KEM-LT-32 [†] LEDAcrypt-KEM-LT-52 [†] VewHope-512-CCA NTRU-HPS-2048-677 VTRU-HPS-2048-677 VTRU-HPS-2048-677 VTRU-HPS-2048-677 VTRU-HPS-2048-677 VTRU-HPS-2048-677 VTRU-HPS-2048-677 VTRU-HPS-2048-677			• •	••	••
BIKE3-L5 (round 1) •• •• FrodoKEM-640-AES •• •• FrodoKEM-976-AES •• •• FrodoKEM-1344-AES •• •• FrodoKEM-1344-AES •• •• FrodoKEM-1344-AES •• •• FrodoKEM-1344-AES •• •• FrodoKEM-1344-SHAKE •• •• FrodoKEM-1344-SHAKE •• •• FrodoKEM-1344-SHAKE •• •• Kyber512 •• •• •• Kyber1024 •• •• •• LEDAcrypt-KEM-LT-12 [†] •• •• •• LEDAcrypt-KEM-LT-52 [†] •• •• •• NewHope-512-CCA •• •• •• NTRU-HPS-2048-509 •• •• •• NTRU-HPS-4096-821 •• •• •• NTRU-HPS-4096-821 •• •• ••<			••	••	••
FrodoKEM-640-AES FrodoKEM-640-SHAKE FrodoKEM-976-AES FrodoKEM-1344-AES FrodoKEM-1344-AES FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE Kyber512 Kyber768 Kyber1024 LEDAcrypt-KEM-LT-12 [†] LEDAcrypt-KEM-LT-32 [†] LEDAcrypt-KEM-LT-52 [†] NrRu-HPS-2048-509 NTRU-HPS-2048-677 NTRU-HPS-2048-677 NTRU-HPS-4096-821 NTRU-HRSS-701 NTRU-HRSS-701 StKEp503 (round 1) StKEp503 StKEp610			•••	••	•••
FrodoKEM-640-SHAKE FrodoKEM-976-AES FrodoKEM-976-SHAKE FrodoKEM-1344-AES FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ FrodoKEM-1344-SHAKE Kyber512 Co $\bigcirc \bigcirc $	BIKE3-L5 (round 1)		••	••	••
FrodoKEM-976-AES FrodoKEM-976-SHAKE FrodoKEM-1344-AES FrodoKEM-1344-AES FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE FrodoKEM-1344-SHAKE Kyber512 Kyber768 Kyber1024 LEDAcrypt-KEM-LT-12 [†] LEDAcrypt-KEM-LT-32 [†] VewHope-512-CCA NewHope-1024-CCA NTRU-HPS-2048-509 NTRU-HPS-2048-677 SiKEp503 (round 1) O O O	FrodoKEM-640-AES		••	••	••
FrodoKEM-976-SHAKE •• •• •• FrodoKEM-1344-AES •• •• •• FrodoKEM-1344-SHAKE •• •• •• FrodoKEM-1344-SHAKE •• •• •• FrodoKEM-1344-SHAKE •• •• •• Kyber512 •• •• •• Kyber1024 •• •• •• LEDAcrypt-KEM-LT-12 [†] •• •• •• LEDAcrypt-KEM-LT-32 [†] •• •• •• NewHope-512-CCA •• •• •• NrRU-HPS-2048-509 •• •• •• NTRU-HPS-2048-677 •• •• •• NTRU-HRSS-701 •• •• •• NTRU-HRSS-701 •• •• •• NTRU-HRSS-701 •• •• •• NTRU-HRSS-701 •• •• •• SlkEp503 (round 1)	FrodoKEM-640-SHAKE		••	••	••
FrodoKEM-1344-AES - FrodoKEM-1344-SHAKE - FrodoKEM-1344-SHAKE - Kyber512 - Kyber768 - Kyber1024 - LEDAcrypt-KEM-LT-12 [†] - LEDAcrypt-KEM-LT-32 [†] - LEDAcrypt-KEM-LT-52 [†] - NewHope-512-CCA - NTRU-HPS-2048-509 - NTRU-HPS-2048-677 - NTRU-HPS-2048-677 - NTRU-HPS-2048-677 - NTRU-HRSS-701 - NTRU-HRSS-701 - NTS-KEM(12,64) [†] - NTS-KEM - SilKEp503 (round 1) - - - SilKEp503 - SilKEp610 -	FrodoKEM-976-AES		••	••	••
FrodoKEM-1344-SHAKE - • • • Kyber512 - - • • • Kyber768 - • • • • Kyber1024 - • • • • LEDAcrypt-KEM-LT-12 [†] - - • • • LEDAcrypt-KEM-LT-32 [†] - • • • • NewHope-512-CCA - - • • • • NewHope-1024-CCA - • • • • • • NTRU-HPS-2048-509 - - •	FrodoKEM-976-SHAKE		••	••	••
Kyber512 - Kyber768 - Kyber1024 - LEDAcrypt-KEM-LT-12 [†] - LEDAcrypt-KEM-LT-32 [†] - LEDAcrypt-KEM-LT-32 [†] - NewHope-512-CCA - NrRU-HPS-2048-509 - NTRU-HPS-2048-677 - NTRU-HPS-300 - NTRU-HPS-4096-821 - NTS-KEM(12,64) [†] - O O NTS-KEM(12,64) [†] - - • Saber-KEM - - • SilKEp503 (round 1) - - • SilKEp503 - SilKEp610 -				$\bullet \bullet$	••
Kyber768 Kyber768 Kyber1024 LEDAcrypt-KEM-LT-32 [†] LEDAcrypt-KEM-LT-32 [†] LEDAcrypt-KEM-LT-52 [†] NewHope-512-CCA NewHope-1024-CCA NTRU-HPS-2048-509 NTRU-HPS-2048-677 NTRU-HPS-4096-821 NTRU-HRSS-701 NTS-KEM(12,64) [†] NTS-KEM(12,64) [†] Saber-KEM FireSaber-KEM SIKEp503 (round 1) - SIKEp503 SIKEp610	FrodoKEM-1344-SHAKE		$\bullet \bullet$	$\bullet \bullet$	••
Kyber768 Kyber1024 LEDAcrypt-KEM-LT-12 [†] LEDAcrypt-KEM-LT-32 [†] LEDAcrypt-KEM-LT-52 [†] NewHope-512-CCA NewHope-1024-CCA NTRU-HPS-2048-509 NTRU-HPS-2048-677 NTRU-HPS-2048-677 NTRU-HPS-2048-677 NTRU-HRSS-701 NTRU-HRSS-701 NTS-KEM(12,64) [†] Sikep-KEM Sikep503 (round 1) Sikep503 Sikep610	Kyber512		••	••	••
Kyber1024••LEDAcrypt-KEM-LT-12 [†] ••LEDAcrypt-KEM-LT-32 [†] ••LEDAcrypt-KEM-LT-52 [†] ••NewHope-512-CCA••NewHope-1024-CCA••NTRU-HPS-2048-509••NTRU-HPS-2048-677••NTRU-HPS-2048-677••NTRU-HRSS-701••NTRU-HRSS-701••NTS-KEM(12,64) [†] ••SlkEp503 (round 1)••SIKEp503••SIKEp610•••					••
LEDAcrypt-KEM-LT- 12^{\dagger} - LEDAcrypt-KEM-LT- 32^{\dagger} - LEDAcrypt-KEM-LT- 52^{\dagger} - NewHope- 512 -CCA - NewHope- 1024 -CCA - NTRU-HPS- 2048 - 509 - NTRU-HPS- 2048 - 677 - NTRU-HPS- 4096 - 821 - NTRU-HRSS- 701 - NTS-KEM($12,64)^{\dagger}$ - Saber-KEM - Saber-KEM - SikEp503 (round 1) - - - SiKEp503 - SiKEp610 -	2		••	••	••
LEDAcrypt-KEM-LT- 32^{\dagger} - LEDAcrypt-KEM-LT- 52^{\dagger} - NewHope-512-CCA - NewHope-1024-CCA - NTRU-HPS-2048-509 - NTRU-HPS-2048-677 - NTRU-HPS-4096-821 - NTRU-HRSS-701 - NTRU-HRSS-701 - NTS-KEM(12,64)^{\dagger} - Slkep-KEM - FireSaber-KEM - SIKEp503 (round 1) - - - SIKEp503 - SIKEp610 -			••	••	••
LEDAcrypt-KEM-LT-52 [†] - - • • NewHope-512-CCA - • • • NewHope-1024-CCA - • • • NTRU-HPS-2048-509 - • • • NTRU-HPS-2048-677 - • • • NTRU-HPS-2048-677 - • • • NTRU-HRSS-701 - • • • NTS-KEM(12,64) [†] - • • • NTS-KEM(12,64) [†] - • • • Slkep-KEM - • • • SilkEp503 (round 1) - - - - SilkEp503 - • • • • SilkEp610 - • • • • •					
NewHope-512-CCA - NewHope-1024-CCA - NTRU-HPS-2048-509 - NTRU-HPS-2048-677 - NTRU-HPS-2048-677 - NTRU-HPS-4096-821 - NTRU-HRSS-701 - NTRU-HRSS-701 - NTS-KEM(12,64) [†] - Saber-KEM - FireSaber-KEM - SIKEp503 (round 1) - - - SIKEp503 - SIKEp610 -					
NewHope-1024-CCA - NTRU-HPS-2048-509 - NTRU-HPS-2048-677 - NTRU-HPS-2048-677 - NTRU-HPS-4096-821 - NTRU-HRSS-701 - NTS-KEM(12,64) [†] - Saber-KEM - FireSaber-KEM - SIKEp503 (round 1) - - - SIKEp503 - SIKEp610 -	LEDAcrypt-KEM-L1-52		••	••	••
NTRU-HPS-2048-509 - NTRU-HPS-2048-677 - NTRU-HPS-4096-821 - NTRU-HRSS-701 - NTS-KEM(12,64) [†] - NTS-KEM(12,64) [†] - Saber-KEM - FireSaber-KEM - SIKEp503 (round 1) - - - SIKEp503 - SIKEp610 -	NewHope-512-CCA		••	••	••
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NewHope-1024-CCA		••	••	••
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NTRU-HPS-2048-509		••	••	••
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			••		••
NTRU-HRSS-701- $\bullet \bullet$ $\bullet \bullet$ NTS-KEM(12,64)†- $\circ \circ$ $\circ \circ$ $\circ \circ$ LightSaber-KEM- $\bullet \bullet$ $\bullet \bullet$ $\bullet \bullet$ Saber-KEM- $\bullet \bullet$ $\bullet \bullet$ $\bullet \bullet$ FireSaber-KEM- $\bullet \bullet$ $\bullet \bullet$ $\bullet \bullet$ SIKEp503 (round 1)SIKEp434- $\bullet \bullet$ $\bullet \bullet$ $\bullet \bullet$ SIKEp503- $\bullet \bullet$ $\bullet \bullet$ $\bullet \bullet$ SIKEp610- $\bullet \bullet$ $\bullet \bullet$ $\bullet \bullet$			••	••	••
NTS-KEM(12,64)† $$ \bigcirc \bigcirc \bigcirc LightSaber-KEM $$ \bullet \bullet \bullet Saber-KEM $$ \bullet \bullet \bullet FireSaber-KEM $$ \bullet \bullet \bullet SIKEp503 (round 1) $-\bullet$ $$ $$ $$ SIKEp434 $$ \bullet \bullet \bullet SIKEp503 $$ \bullet \bullet \bullet SIKEp610 $$ \bullet \bullet \bullet			••	••	••
Saber-KEM••••••FireSaber-KEM••••••SIKEp503 (round 1)-•SIKEp434••••••SIKEp503••••••SIKEp610••••••			00	00	00
Saber-KEM••••••FireSaber-KEM••••••SIKEp503 (round 1)-•SIKEp434••••••SIKEp503••••••SIKEp610••••••	LightSabor KEM			••	
FireSaber-KEM••••SIKEp503 (round 1)-•SIKEp434••••SIKEp503••••SIKEp610••••					
SIKEp503 (round 1) - - - - - SIKEp434 - • • • • SIKEp503 - • • • • SIKEp610 - • • • •					
SIKEp434 •• •• SIKEp503 •• •• SIKEp610 •• ••			••	••	••
SIKEp503 •• •• SIKEp610 •• ••	SIKEp503 (round 1)	- •			
SIKEp503 •• •• SIKEp610 •• ••	SIKEp434		••	••	••
SIKEp610 •• ••	1		••	••	••
			••	••	••
	SIKEp751		••	••	••

FrodoKEM 976, 1344

- OpenSSL 1.0.2 / TLS 1.2: too large for a preprogrammed buffer size, but easily fixed by increasing one buffer size
- OpenSSL 1.1.1 / TLS 1.3: same

NTS-KEM

- OpenSSL 1.0.2 / TLS 1.2: theoretically within spec's limitation of 2²⁴ bytes, but buffer sizes that large caused failures we couldn't track down
- OpenSSL 1.1.1 / TLS 1.3: too large for spec (2¹⁶-1 bytes)
- OpenSSH: theoretically within spec but not within RFC's "SHOULD", but couldn't resolve bugs 35

		OpenSSL 1.1.1 (TLS 1.3)
	Dilithium-2 Dilithium-3 Dilithium-4	• • • • • •
1 st circle: PQ only	MQDSS-31-48 MQDSS-31-64	
2 nd circle: hybrid RSA	Picnic-L1-FS Picnic-L1-UR	
• = success	Picnic-L3-FS Picnic-L3-UR Picnic-L5-FS	
fixable by changing implementation parameter	Picnic-L5-UR Picnic2-L1-FS Picnic2-L3-FS Picnic2-L5-FS	
○= would violate spec or otherwise	qTesla-I (round 1) qTesla-III-size (round 1) qTesla-III-speed (round 1)	• • • • • •
unresolved error	Rainbow-Ia-Classic [†] Rainbow-Ia-Cyclic [†]	
† = algorithm on testing branch	$\begin{array}{l} {\rm Rainbow-Ia-Cyclic-Compressed}^{\dagger} \\ {\rm Rainbow-IIIc-Classic}^{\dagger} \\ {\rm Rainbow-IIIc-Cyclic}^{\dagger} \\ {\rm Rainbow-IIIc-Cyclic-Compressed}^{\dagger} \\ {\rm Rainbow-Vc-Classic}^{\dagger} \\ {\rm Rainbow-Vc-Cyclic}^{\dagger} \\ {\rm Rainbow-Vc-Cyclic-Compressed}^{\dagger} \end{array}$	
	SPHINCS+-{Haraka,SHA256,SHAKE256}-128f-{robust,simple} SPHINCS+-{Haraka,SHA256,SHAKE256}-128s-{robust,simple} SPHINCS+-{Haraka,SHA256,SHAKE256}-192f-{robust,simple} SPHINCS+-{Haraka,SHA256,SHAKE256}-192s-{robust,simple} SPHINCS+-{Haraka,SHA256,SHAKE256}-256f-{robust,simple} SPHINCS+-{Haraka,SHA256,SHAKE256}-256s-{robust,simple}	

TLS 1.3:

- Max certificate size: 2²⁴-1
 - Max signature size: 2¹⁶-1

OpenSSL 1.1.1:

- Max certificate size: 102,400 bytes, but runtime enlargeable
- Max signature size: 2¹⁴

		OpenSSL 1.1.1 (TLS 1.3)	OpenSSH	_
	Dilithium-2 Dilithium-3 Dilithium-4	• • • • • •	• • • • • •	_
1 st circle: PQ only	MQDSS-31-48 MQDSS-31-64	• • • •	••	-
2 nd circle: hybrid RSA	Picnic-L1-FS Picnic-L1-UR	••	••	
• = success	Picnic-L3-FS Picnic-L3-UR Picnic-L5-FS			
= fixable by changing implementation parameter	Picnic-L5-UR Picnic2-L1-FS Picnic2-L3-FS Picnic2-L5-FS		• • • • • •	
○ = would violate spec or otherwise unresolved error	qTesla-I (round 1) qTesla-III-size (round 1) qTesla-III-speed (round 1)	• • • • • •	• • • • • •	_
	Rainbow-Ia-Classic [†] Rainbow-Ia-Cyclic [†] Rainbow-Ia-Cyclic-Compressed [†]	••		
† = algorithm on testing branch	Rainbow-IIIc-Classic [†] Rainbow-IIIc-Cyclic [†] Rainbow-IIIc-Cyclic-Compressed [†] Rainbow-Vc-Classic [†] Rainbow-Vc-Cyclic [†] Rainbow-Vc-Cyclic [†]			OpenSSH maximum packet size: 2 ¹⁸
	SPHINCS+-{Haraka,SHA256,SHAKE256}-128f-{robust,simple} SPHINCS+-{Haraka,SHA256,SHAKE256}-128s-{robust,simple} SPHINCS+-{Haraka,SHA256,SHAKE256}-192f-{robust,simple} SPHINCS+-{Haraka,SHA256,SHAKE256}-192s-{robust,simple} SPHINCS+-{Haraka,SHA256,SHAKE256}-256f-{robust,simple} SPHINCS+-{Haraka,SHA256,SHAKE256}-256s-{robust,simple}			

Summary

- Several design choices for hybrid key exchange in network protocols on negotiation and transmitting public keys, no consensus
- Protocols have size constraints which prevent some schemes from being used
- Implementations may have additional size constraints which affect some schemes, which can be bypassed with varying degrees of success

Extensions and open questions

Remaining Round 2 candidates

 Welcome help in getting code into our framework – either directly into liboqs or via PQClean

Constraints in other parts of the protocol ecosystem

- Other client/server implementations
- Middle boxes

Performance

- Latency and throughput in lab conditions
- Latency in realistic network conditions à la [Lan18]

Use in applications

- Tested our OpenSSL experiment with Apache, nginx, links, OpenVPN, with reasonable success
- More work to do: S/MIME, more TLS clients, ...

Benchmarking PQ crypto in TLS

Christian Paquin, Douglas Stebila, Goutam Tamvada. **Benchmarking post-quantum cryptography in TLS**. In *PQCrypto 2020*, to appear. <u>https://eprint.iacr.org/2019/1447</u>

 Measure effect of network latency and packet loss rate on handshake completion time for postquantum connections of various sizes

- Out of scope:
 - Effect of different CPU speeds from client or server
 - Effect of network bandwidth / throughput

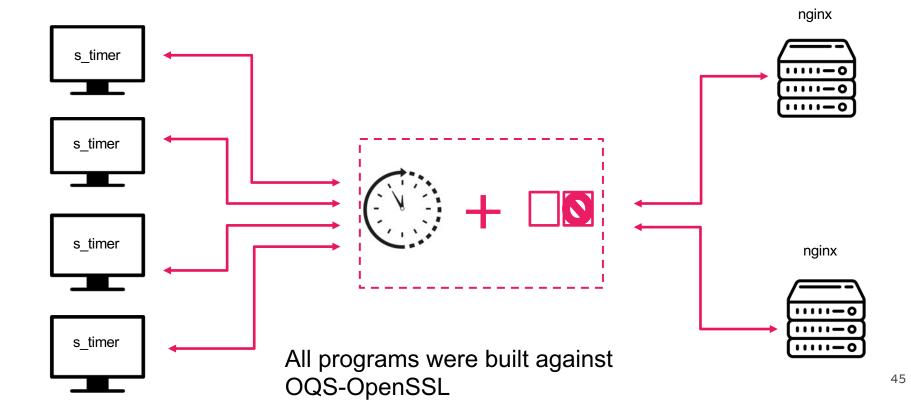
Prior Work

What if you don't have billions of clients and millions of servers?

Emulate the network

+ more control over experiment parameters

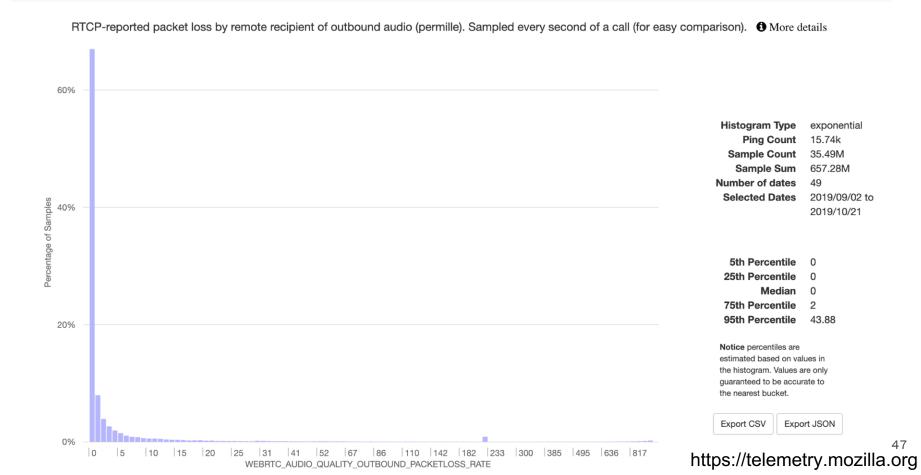
+ easier to isolate effects of network characteristics


– loss in realism

Network emulation setup

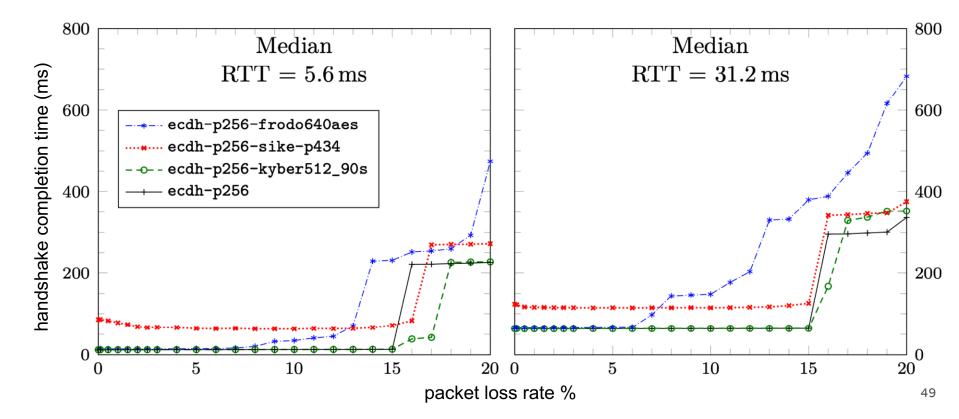
• Linux kernel **network namespaces**

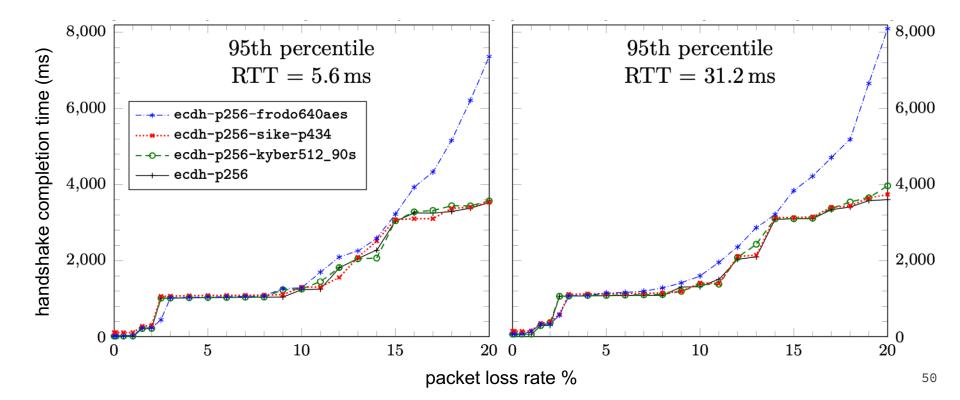
- Independent copies of the kernel's network stack, each having its own routes, addresses, firewall rules, etc.
- Virtual ethernet devices created in pairs one outgoing, one incoming
- netem (network emulation) kernel module
 - Can instruct kernel to apply certain delay to packets
 - Can instruct kernel to randomly drop packets with a certain rate


Experiment setup

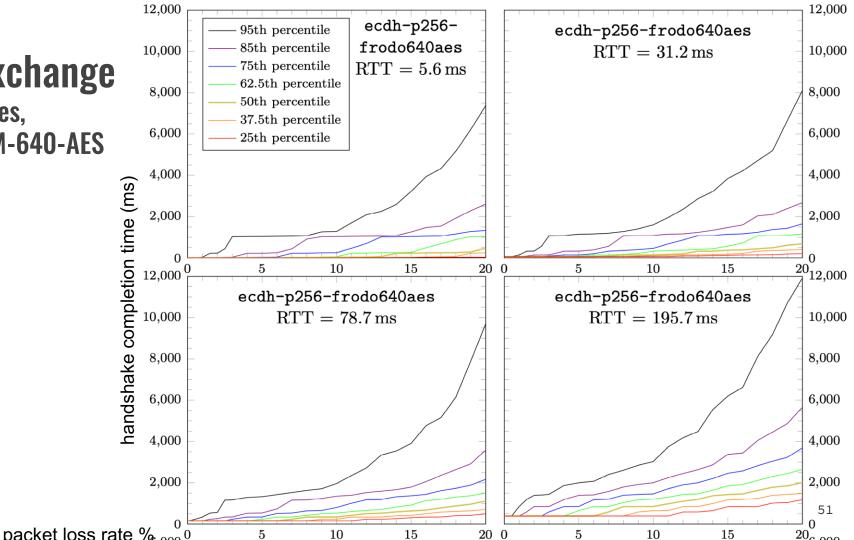
Network latencies

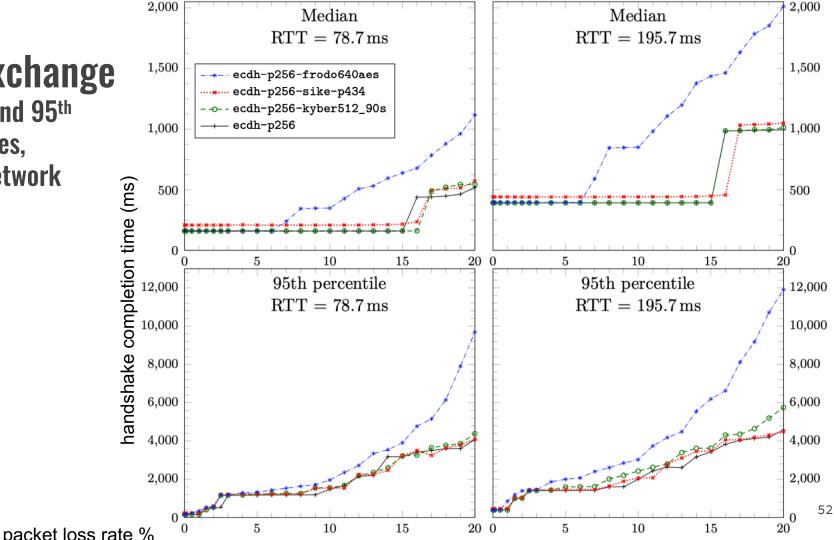
Virtual machine	Azure region	Round-trip time
Client	East US 2 (Virginia)	_
$\mathbf{Server} - \mathbf{near}$	East US (Virginia)	$6.193\mathrm{ms}$
Server - medium	Central US (Iowa)	$30.906\mathrm{ms}$
$\mathbf{Server} - \mathbf{far}$	North Europe (Ireland)	$70.335\mathrm{ms}$
Server-worst-case	Australia East (New South Wales)	$198.707\mathrm{ms}$

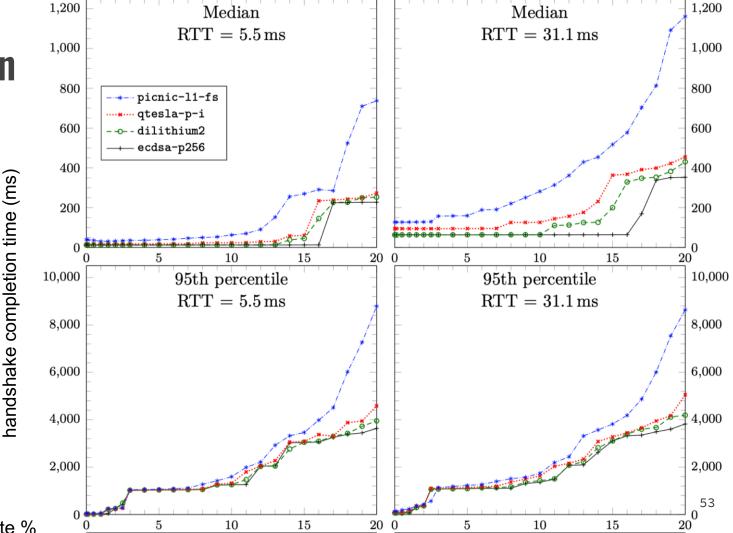

WEBRTC AUDIO QUALITY OUTBOUND PACKETLOS... distribution for Firefox Desktop nightly 71, on any OS (62) any architecture (3) with any process and compare by none

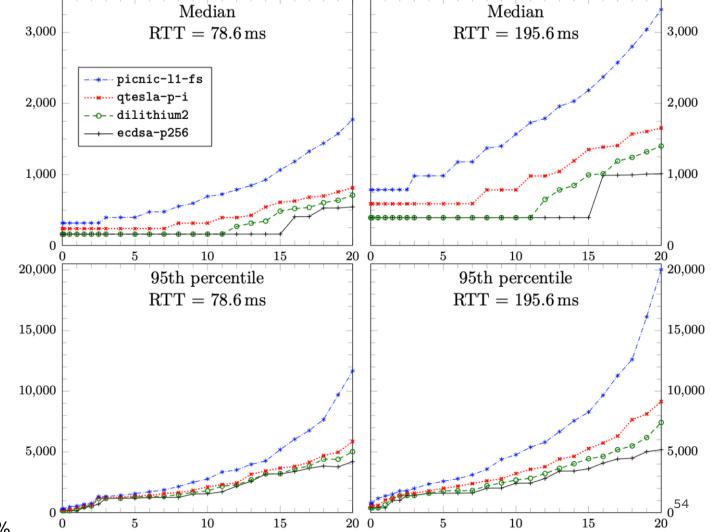

Algorithms in experiment

Notation	Hybrid	Family	Variant	Implementation
Key exchange				
ecdh-p256 ecdh-p256-sike-p434 ecdh-p256-kyber512_90s ecdh-p256-frodo640aes	×	Elliptic-curve Supersingular isogeny Module LWE Plain LWE	NIST P-256 SIKE p434 [JAC ⁺ 19] Kyber 90s level 1 [SAB ⁺ 19] Frodo-640-AES [NAB ⁺ 19]	OpenSSL optimized Assembly optimized AVX2 optimized C with AES-NI
Signatures				
ecdsa-p256 dilithium2 qtesla-p-i picnic-l1-fs	× × × ×	Elliptic curve Module LWE/SIS Ring LWE/SIS Symmetric	NIST P-256 Dilithium2 [LDK ⁺ 19] qTESLA provable 1 [BAA ⁺ 19] Picnic-L1-FS [ZCD ⁺ 19]	OpenSSL optimized AVX2 optimized AVX2 optimized AVX2 optimized


Key exchange median, lower network latencies


Key exchange 95th percentile, lower network latencies


Key exchange percentiles, FrodoKEM-640-AES



packet loss rate %

packet loss rate %

handshake completion time (ms)

Exploring post-quantum cryptography in Internet protocols

https://eprint.iacr.org/2019/858

https://eprint.iacr.org/2019/1356

https://eprint.iacr.org/2019/1447

https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-02

https://openquantumsafe.org/

https://github.com/open-quantum-safe/

https://www.douglas.stebila.ca/

Netherlands Crypto Working Group • 2020-02-07

Appendix

Design issues for hybrid key exchange in TLS 1.3

Douglas Stebila, Scott Fluhrer, Shay Gueron. **Design issues for hybrid key exchange in TLS 1.3**. **Internet-Draft**. Internet Engineering Task Force, July 2019. <u>https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-01</u>

Candidate Instantiation 1 – Negotiation

Follows draft-whyte-qsh-tls13-06

NamedGroup enum for supported_groups extension contains "hybrid markers" with no pre-defined meaning

Each hybrid marker points to a mapping in an extension, which lists which combinations the client proposes; between 2 and 10 algorithms permitted

supported_groups:

hybrid_marker00, hybrid_marker01, hybrid_marker02, secp256r1

HybridExtension:

hybrid_marker00 →
 secp256r1+sike123+ntru456

• hybrid_marker01 \rightarrow secp256r1+sike123

hybrid_marker02 →

secp256r1+ntru456

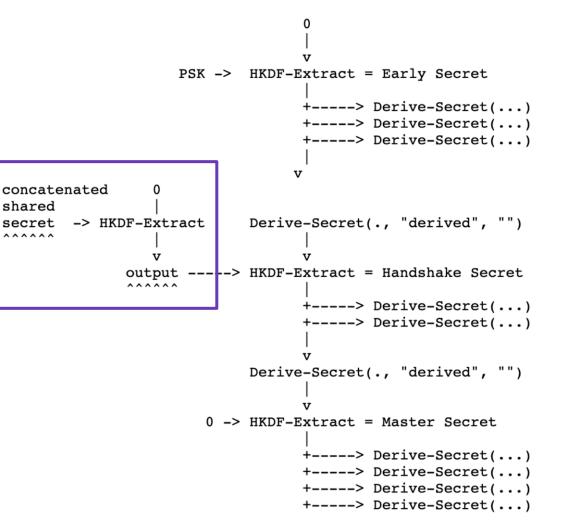
Candidate Instantiation 1 – Conveying keyshares

Client's key shares:

- Existing KeyShareClientHello allows multiple key shares
- => Send 1 key share per algorithm
 - secp256r1, sike123, ntru456
- No changes required to data structures or logic

Server's key shares:

- Respond with
 NamedGroup = hybrid_markerXX
- Existing KeyShareServerHello only permits one key share
- => Squeeze 2+ key shares into single key share field by concatenation


```
struct {
    KeyShareEntry key_share<2..10>;
} HybridKeyShare;
```

Instantiation 1 – **Combining keys**

shared

secret

~ ~ ~ ~ ~ ~

Candidate Instantiation 2 – Negotiation

Follows draft-kiefer-tls-ecdhe-sidh-00, enum { Open Quantum Safe implementation, ... ***

New NamedGroup element standardized for each desired combination

No internal structure to new code points

```
/* existing named groups */
secp256r1 (23),
x25519 (0x001D),
```

/* new code points eventually defined for post-quantum algorithms */
PQ1 (0x????),
PQ2 (0x????),

```
•••,
```

...,

```
/* new code points defined for hybrid combinations */
secp256r1_PQ1 (0x????),
secp256r1_PQ2 (0x????),
x25519_PQ1 (0x????),
x25519_PQ2 (0x????),
```

```
/* existing reserved code points */
ffdhe_private_use (0x01FC..0x01FF),
ecdhe_private_use (0xFE00..0xFEFF),
(0xFFFF)
```

```
} NamedGroup;
```

Candidate Instantiation 2 – Conveying keyshares

KeyShareClientHello contains an entry for each code point listed in supported_groups

KeyShareServerHello contains a single entry for the chosen code point

KeyShareEntry for hybrid code points is an opaque string parsed with the following internal structure:

```
struct {
    KeyShareEntry key_share<2..10>;
} HybridKeyShare;
```

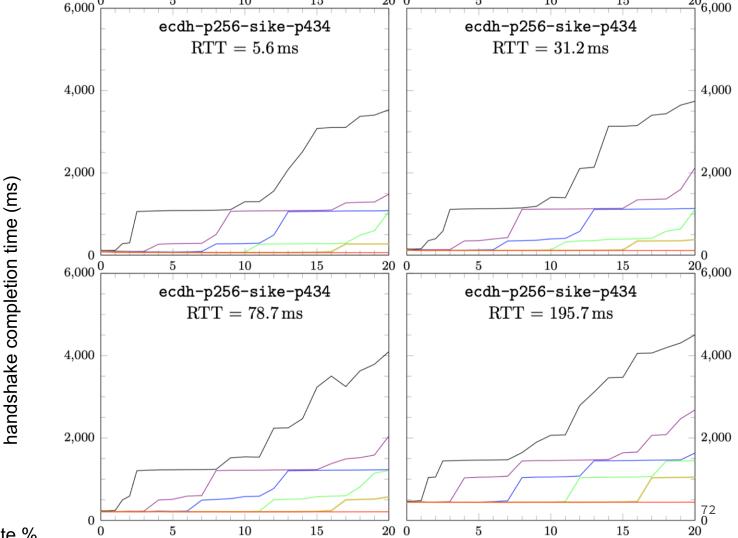
Candidate Instantiation 1

Candidate Instantiation 2

Adds new negotiation logic and ClientHello extensions

Does not result in duplicate key shares or combinatorial explosion of NamedGroups No change in negotiation logic or data structures

No change to protocol logic: concatenation of key shares and KDFing shared secrets can be handled "internally" to a method


Results in combinatorial explosion of NamedGroups

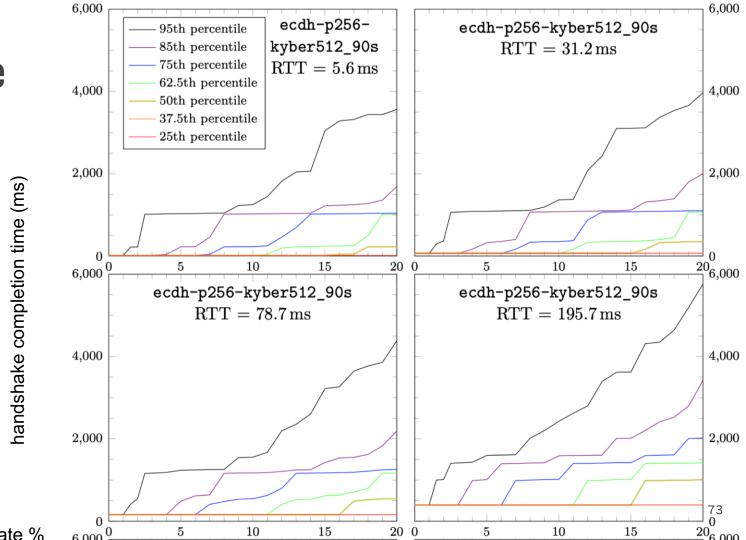
Duplicate key shares will be sent

Benchmarking PQ crypto in TLS

Christian Paquin, Douglas Stebila, Goutam Tamvada. **Benchmarking post-quantum cryptography in TLS**. In *PQCrypto 2020*, to appear. <u>https://eprint.iacr.org/2019/1447</u>

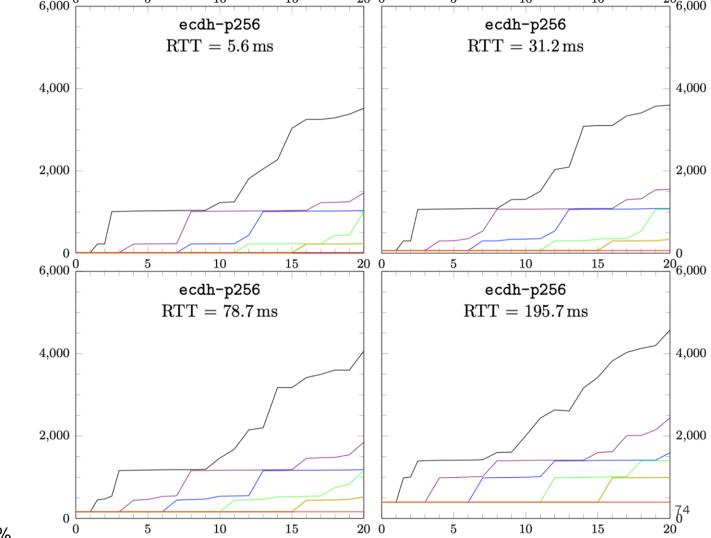
Key exchange percentiles, SIKE-p434

υ


 $\mathbf{T}\mathbf{O}$

υ

 $\mathbf{10}$

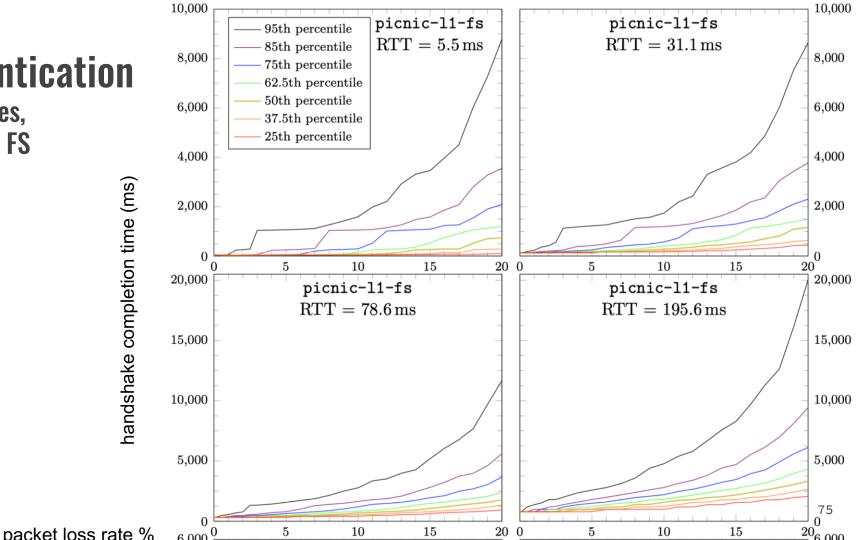

packet loss rate %

Key exchange percentiles, Kyber512-90s

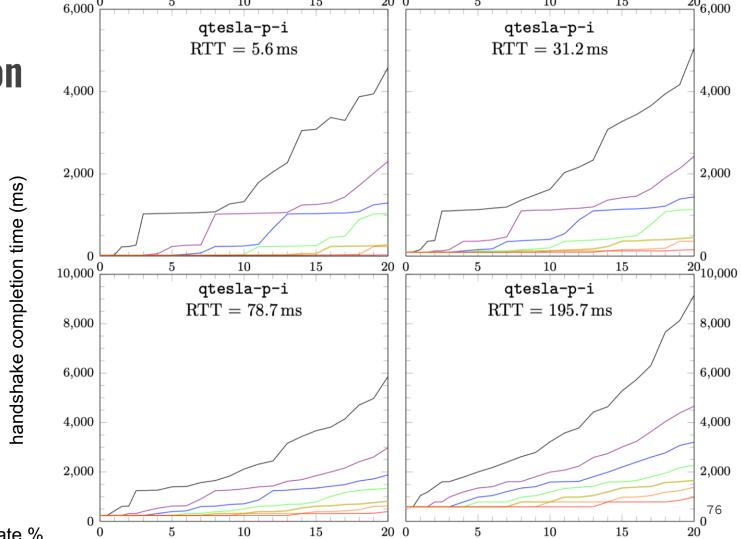
packet loss rate %

Key exchange percentiles, ECDH-p256

то


то

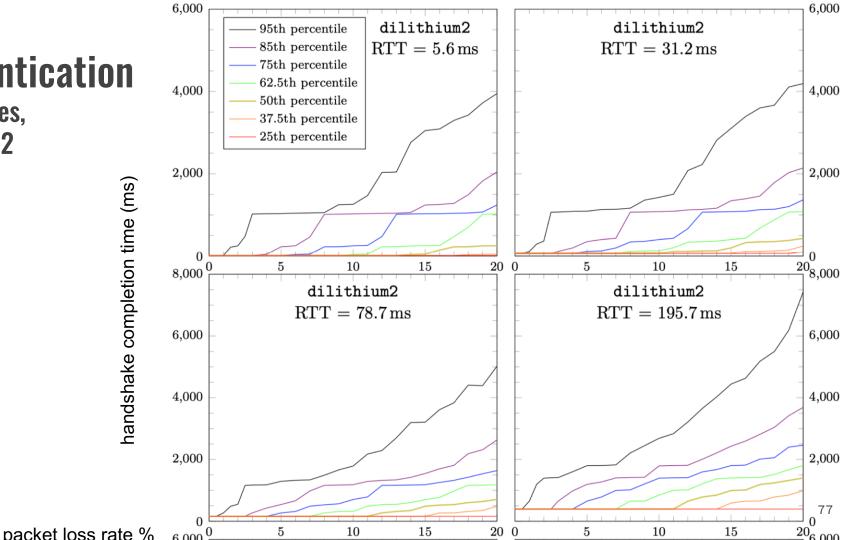
packet loss rate %


handshake completion time (ms)

Authentication percentiles,

Picnic L1 FS

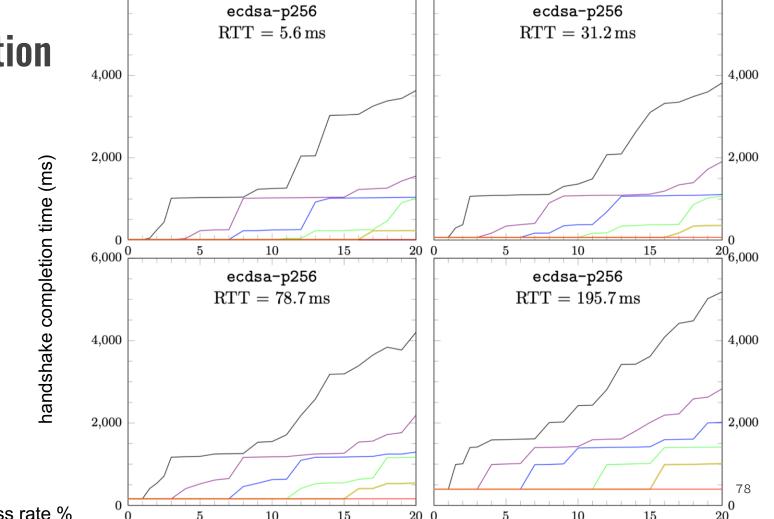
Authentication percentiles, qTesla-P-I


Э

Э

packet loss rate %

Authentication percentiles,


Dilithium2

Authentication percentiles,

ECDSA-p256

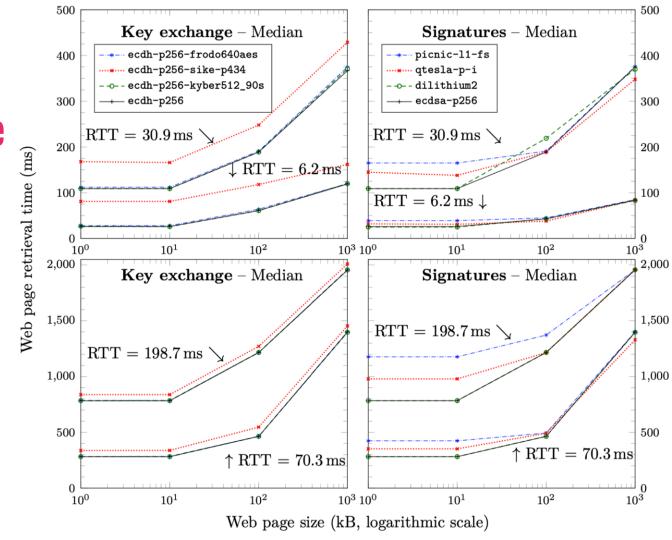
6,000 ^U

то

τU

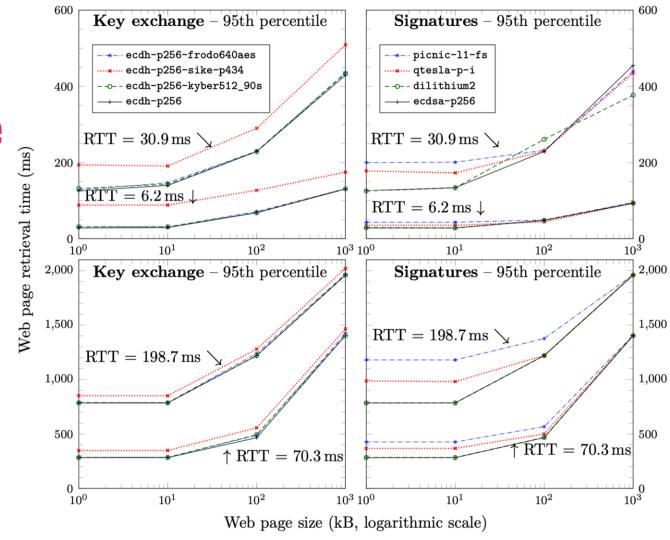
40 U

то


то

<u>–</u>6,000

packet loss rate %


Data-centreto-data-centre

web page latency as a function of page size, median

Data-centreto-data-centre

web page latency as a function of page size, 95th percentile

