
Exploring post-quantum cryptography in
Internet protocols

Douglas Stebila

https://eprint.iacr.org/2019/858

https://eprint.iacr.org/2019/1356

https://eprint.iacr.org/2019/1447

https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-02
Netherlands Crypto Working Group • 2020-02-07

https://openquantumsafe.org/

https://github.com/open-quantum-safe/

https://www.douglas.stebila.ca/

https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2019/1447
https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-02
https://github.com/open-quantum-safe/
https://github.com/open-quantum-safe/
https://www.douglas.stebila.ca/

2

Overview

● Design issues in adding hybrid key exchange to Internet protocols
● Open Quantum Safe project
● Compatibility issues of post-quantum & hybrid key exchange and

authentication in SSH and TLS
● Performance of post-quantum & hybrid key exchange and authentication

in TLS

3

“Hybrid”

4

“Hybrid” or “composite” or “dual” or “multi-
algorithm” cryptography

● Use pre-quantum and post-
quantum algorithms together

● Secure if either one remains
unbroken

Why hybrid?
● Potential post-quantum security

for early adopters
● Maintain compliance with older

standards (e.g. FIPS)
● Reduce risk from uncertainty on

PQ assumptions/parameters

5

Hybrid ciphersuites

● Need PQ key exchange before we need PQ authentication because future quantum
computers could retroactively decrypt, but not retroactively impersonate

6

Key exchange Authentication

1 Hybrid traditional + PQ Single traditional

2 Hybrid traditional + PQ Hybrid traditional + PQ

3 Single PQ Single traditional

4 Single PQ Single PQ

Likely focus
for next 5-10 years

Hybrid key exchange and authentication to date

● Hybrid key exchange Internet-Drafts at IETF:
○ TLS 1.2: Schanck, Whyte, Zhang 2016; Amazon 2019
○ TLS 1.3: Schanck, Stebila 2017; Whyte, Zhang, Fluhrer, Garcia-Morchon 2017; Kiefer,

Kwiatkowski 2018; Stebila, Fluhrer, Gueron 2019/20
○ IPsec / IKEv2: Tjhai, Thomlinson, Bartlet, Fluhrer, Geest, Garcia-Morchon, Smyslov 2019

● Hybrid key exchange experimental implementations:
○ Google CECPQ1, CECPQ2; Open Quantum Safe; CECPQ2b; …

● Hybrid X.509 certificates:
○ Truskovsky, Van Geest, Fluhrer, Kampanakis, Ounsworth, Mister 2018

7

Design issues for hybrid key exchange
in TLS 1.3

8

Douglas Stebila, Scott Fluhrer, Shay Gueron. Hybrid key exchange in TLS 1.3. Internet-Draft. Internet
Engineering Task Force, February 2020. https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-02

https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-02

Goals for hybridization

1. Backwards compatibility
○ Hybrid-aware client, hybrid-aware server

○ Hybrid-aware client, non-hybrid-aware server

○ Non-hybrid-aware client, hybrid-aware server

2. Low computational overhead
3. Low latency
4. No extra round trips
5. No duplicate information

● How to negotiate algorithms
● How to convey cryptographic data

(public keys / ciphertexts)
● How to combine keying material

Design options

9

Negotiation: How many algorithms?

2

Done in all(?) implementations to date.

≥ 2

10

Negotiation: How to indicate which algorithms to use

Negotiate each algorithm individually

1. Standardize a name for each algorithm
2. Provide a data structure for conveying

supported algorithms
3. Implement logic negotiating which

combination

Done in Amazon s2n TLS 1.2

Negotiate pre-defined
combinations of algorithms

1. Standardize a name for each desired
combination

● Can use existing negotiation
data structures and logic

Done in all(?) other implementations to date

11
Which option is preferred may depend on how many
algorithms are ultimately standardized.

Conveying cryptographic data (public keys / ciphertexts)

1) Separate public keys
● For each supported algorithm, send

each public key / ciphertext in its own
parseable data structure

● Done in Amazon s2n TLS 1.2
2) Concatenate public keys
● For each supported combination,

concatenate its public keys / ciphertext
into an opaque data structure

● Done in all other implementations to
date.

#1 requires protocol and
implementation changes

#2 abstracts combinations into “just
another single algorithm”
But #2 can also lead to sending
duplicate values
● nistp256+bike1l1
● nistp256+sikep403
● nistp256+frodo640aes
● sikep403+frodo640aes 12

3x nistp256,
2x sikep403,
2x frodo640aes
public keys

Combining keying material

Top requirement: needs to provide
“robust” security:
● Final session key should be secure

as long as at least one of the
ingredient keys is unbroken

● (Most obvious techniques are fine,
though with some subtleties; see
Giacon, Heuer, Poettering PKC’18,
Bindel et al. PQCrypto 2019, … .)

● XOR keys
● Concatenate keys and use directly
● Concatenate keys then apply a

hash function / KDF
● Extend the protocol’s

“key schedule” with
new stages for each key

● Insert the 2nd key into an unused
spot in the protocol’s key schedule

13

Draft-00
@ IETF 104

draft-stebila-tls-hybrid-design-00

Contained a “menu” of design options
along several axes

1. How to negotiate which algorithms?
2. How many algorithms?
3. How to transmit public key shares?
4. How to combine secrets?

Feedback from working group:

● Avoid changes to key schedule
● Present one or two instantiations
● Specific feedback on some aspects

14

Draft-01
@ IETF 105

draft-stebila-tls-hybrid-design-01

Kept menu of design choices

Constructed two candidate
instantiations from menu for
discussion

1. Directly negotiate each hybrid
algorithm; separate key shares

2. Code points for pre-defined
combinations; concatenated key
shares

Additional KDF-based options for
combining keys

15

Draft-02
February 2020
draft-stebila-tls-hybrid-design-02

Number of algorithms:
● 2

Negotiation:
● Negotiate pairs of algorithms in

combination

16

Draft-02
February 2020
draft-stebila-tls-hybrid-design-02

Conveying public keys:
● Concatenated public keys

○ But with length encoding
○ Since some algorithms don’t have

fixed-length public keys / ciphertexts

Combining keying material:
● Concatenate shared secrets then

put into TLS 1.3 key schedule
○ Key schedule applies HKDF.Extract

● No length encoding
● Will be approved by NIST in

upcoming revision of SP-800-56C
17

Open questions

● Still some debate about negotiation and using concatenate public keys /
ciphertexts

● Is it safe to use an IND-CPA KEM for ephemeral key exchange in TLS 1.3?
○ Intuitively, seems like it should be safe for one-time use keys

§ Some implementations re-use ephemeral keys which wouldn’t match IND-CPA

○ But proofs of signed ephemeral DH in TLS 1.2 used an interactive assumption (PRF-
ODH) rather than a standard assumption (DDH) (JKSS, C’12); was later shown to be
necessary (KraPatWee, C’13)

○ Proofs of signed-DH in TLS 1.3 (BFGS CCS’15, …) also use PRF-ODH; no analysis of
whether this is necessary, no generalization to KEMs) 18

19https://openquantumsafe.org/ • https://github.com/open-quantum-safe/

https://openquantumsafe.org/
https://github.com/open-quantum-safe/

Open Quantum Safe Project

20

liboqs
key exchange / KEMs signatures

isogenies code-based lattice-based multi-variate
polynomial

hash-based /
symmetric

OpenSSL
• TLS 1.2
• TLS 1.3

• CMS

BoringSSL
Open
SSH

Language
SDKs

C#, C++,
Go, Python

Apache
httpd nginx curl,

links
Open
VPN

C language library,
common API
• x86/x64 (Linux, Mac,

Windows)
• ARM (Android,

Linux)

Integration into forks of
widely used open-
source projects

Use in applications

PQClean

Chromium

Standalone C
reference
implementations,
heavily tested

OQS team

● Project leads
○ Douglas Stebila (Waterloo)
○ Michele Mosca (Waterloo)

● Industry collaborators
○ Amazon Web Services

○ Cisco Systems
○ evolutionQ
○ IBM Research

○ Microsoft Research

● Individual contributors

● Financial support
○ Government of Canada

§ NSERC Discoverry

§ Tutte Institute
○ Amazon Web Services

● In-kind contributions of
developer time from industry
collaborators

21

liboqs

● C library with common API for
post-quantum signature schemes
and key encapsulation
mechanisms

● MIT License
● Builds on Windows, macOS, Linux;

x86_64, ARM v8

● 50 key encapsulation mechanisms
from 9 NIST Round 2 candidates

● 52 signature schemes from 5 NIST
Round 2 candidates

22

List of algorithms

Key encapsulation mechanisms
● BIKE: BIKE1-L1-CPA, BIKE1-L3-CPA, BIKE1-L1-FO, BIKE1-L3-FO
● FrodoKEM: FrodoKEM-640-AES, FrodoKEM-640-SHAKE, FrodoKEM-

976-AES, FrodoKEM-976-SHAKE, FrodoKEM-1344-AES, FrodoKEM-
1344-SHAKE

● Kyber: Kyber512, Kyber768, Kyber1024, Kyber512-90s, Kyber768-90s,
Kyber1024-90s

● LEDAcrypt: LEDAcryptKEM-LT12, LEDAcryptKEM-LT32,
LEDAcryptKEM-LT52

● NewHope: NewHope-512-CCA, NewHope-1024-CCA
● NTRU: NTRU-HPS-2048-509, NTRU-HPS-2048-677, NTRU-HPS-4096-

821, NTRU-HRSS-701
● SABER: LightSaber-KEM, Saber-KEM, FireSaber-KEM
● SIKE: SIDH-p434, SIDH-p503, SIDH-p610, SIDH-p751, SIKE-p434, SIKE-

p503, SIKE-p610, SIKE-p751, SIDH-p434-compressed, SIDH-p503-
compressed, SIDH-p610-compressed, SIDH-p751-compressed, SIKE-
p434-compressed, SIKE-p503-compressed, SIKE-p610-compressed,
SIKE-p751-compressed

● ThreeBears: BabyBear, BabyBearEphem, MamaBear,
MamaBearEphem, PapaBear,PapaBearEphem

Signature schemes
● Dilithium: Dilithium2, Dilithium3, Dilithium4
● MQDSS: MQDSS-31-48, MQDSS-31-64
● Picnic: Picnic-L1-FS, Picnic-L1-UR, Picnic-L3-FS, Picnic-L3-UR,

Picnic-L5-FS, Picnic-L5-UR, Picnic2-L1-FS, Picnic2-L3-FS,
Picnic2-L5-FS

● qTesla: qTesla-p-I, qTesla-p-III
● SPHINCS+-Haraka: SPHINCS+-Haraka-128f-robust, SPHINCS+-

Haraka-128f-simple, SPHINCS+-Haraka-128s-robust,
SPHINCS+-Haraka-128s-simple, SPHINCS+-Haraka-192f-robust,
SPHINCS+-Haraka-192f-simple, SPHINCS+-Haraka-192s-robust,
SPHINCS+-Haraka-192s-simple, SPHINCS+-Haraka-256f-robust,
SPHINCS+-Haraka-256f-simple, SPHINCS+-Haraka-256s-robust,
SPHINCS+-Haraka-256s-simple

● SPHINCS+-SHA256: SPHINCS+-SHA256-128f-robust,
SPHINCS+-SHA256-128f-simple, SPHINCS+-SHA256-128s-
robust, SPHINCS+-SHA256-128s-simple, SPHINCS+-SHA256-
192f-robust, SPHINCS+-SHA256-192f-simple, SPHINCS+-
SHA256-192s-robust, SPHINCS+-SHA256-192s-simple,
SPHINCS+-SHA256-256f-robust, SPHINCS+-SHA256-256f-
simple, SPHINCS+-SHA256-256s-robust, SPHINCS+-SHA256-
256s-simple

● SPHINCS+-SHAKE256: SPHINCS+-SHAKE256-128f-robust,
SPHINCS+-SHAKE256-128f-simple, SPHINCS+-SHAKE256-128s-
robust, SPHINCS+-SHAKE256-128s-simple, SPHINCS+-
SHAKE256-192f-robust, SPHINCS+-SHAKE256-192f-simple,
SPHINCS+-SHAKE256-192s-robust, SPHINCS+-SHAKE256-192s-
simple, SPHINCS+-SHAKE256-256f-robust, SPHINCS+-
SHAKE256-256f-simple, SPHINCS+-SHAKE256-256s-robust,
SPHINCS+-SHAKE256-256s-simple

23

PQClean

● Sister project to OQS
● Goal: standalone, high-quality C

reference implementations of PQ
algorithms
○ Lots of automated code analysis and

continuous integration testing

○ Builds tested on little-endian and big-endian

● MIT License and public domain

● Not a library, but easy to pull out
code that can be incorporated into
a library
○ liboqs consumes implementations from

PQClean

● In collaboration with Peter
Schwabe and team at Radboud
University, Netherlands

https://github.com/PQClean/PQClean
24

https://github.com/PQClean/PQClean

OpenSSL

● OQS fork of OpenSSL 1.0.2
○ PQ and hybrid key exchange in TLS 1.2

● OQS fork of OpenSSL 1.1.1
○ PQ and hybrid key exchange in TLS 1.3

○ PQ and hybrid certificates and signature authentication in TLS 1.3
○ PQ and hybrid signatures in Cryptographic Message Syntax (CMS)

● Can be readily used with applications that rely on OpenSSL with few/no
modifications

25

OQS demo: OpenSSL

26

BoringSSL

● OQS fork of BoringSSL (which is a fork of
OpenSSL)
○ PQ and hybrid key exchange in TLS 1.3

● After a few modifications, can be used with
Chromium!

27

OQS demo: Chromium with BoringSSL talking to Apache

28

OpenSSH

● OQS fork of OpenSSH
○ PQ and hybrid key exchange
○ PQ and hybrid signature authentication

29

OQS demo: OpenSSH

30

Using OQS

● All open source software available on GitHub
● Instructions for building on Linux, macOS, and Windows
● Docker images available for building and running OQS-reliant applications

○ Apache httpd
○ curl

○ nginx
○ OpenSSH

31

Prototyping post-quantum and hybrid key
exchange and authentication in TLS and SSH

32

Eric Crockett, Christian Paquin, Douglas Stebila. Prototyping post-quantum and hybrid key exchange
and authentication in TLS and SSH. In NIST 2nd Post-Quantum Cryptography Standardization
Conference 2019. August 2019. https://eprint.iacr.org/2019/858

https://eprint.iacr.org/2019/858

Case study 1: TLS 1.2 in Amazon s2n

● Multi-level negotiation following TLS 1.2 design style:
○ Top-level ciphersuite with algorithm family: e.g.

TLS_ECDHE_SIKE_ECDSA_WITH_AES_256_GCM_SHA384

○ Extensions used to negotiate parameterization within family:
§ 1 extension for which ECDH elliptic curve: nistp256, curve25519, …

§ 1 extension for which PQ parameterization: sikep403, sikep504, …

● Session key: concatenate session keys and apply KDF with public key/ciphertext as
KDF label

● Experimental results: successfully implemented using nistp256+{bike1l1, sikep503}

33

Case studies 2, 3, 4:
TLS 1.2 in OpenSSL 1.0.2
TLS 1.3 in OpenSSL 1.1.1
SSH v2 in OpenSSH 7.9

● Negotiate pairs of algorithms in pre-defined combinations
● Session key: concatenate session keys and use directly in key schedule

● Easy implementation, no change to negotiation logic

● Based on implementations in liboqs
○ KEMs: 9 of 17 (BIKE round 1, FrodoKEM, Kyber, LEDAcrypt, NewHope, NTRU, NTS (1 variant), Saber, SIKE)

○ Signature schemes: 6 of 9 (Dilithium, MQDSS, Picnic, qTesla (round 1), Rainbow, SPHINCS+)
34

1st circle: PQ only
2nd circle: hybrid ECDH

= success

= fixable by changing
implementation
parameter

= would violate spec
or otherwise
unresolved error

† = algorithm on testing
branch

FrodoKEM 976, 1344
• OpenSSL 1.0.2 / TLS 1.2:

too large for a pre-
programmed buffer size,
but easily fixed by
increasing one buffer size

• OpenSSL 1.1.1 / TLS 1.3:
same

NTS-KEM
• OpenSSL 1.0.2 / TLS 1.2:

theoretically within spec’s
limitation of 224 bytes, but
buffer sizes that large
caused failures we
couldn’t track down

• OpenSSL 1.1.1 / TLS 1.3:
too large for spec
(216-1 bytes)

• OpenSSH: theoretically
within spec but not within
RFC’s “SHOULD”, but
couldn’t resolve bugs 35

1st circle: PQ only
2nd circle: hybrid RSA

= success

= fixable by changing
implementation
parameter

= would violate spec
or otherwise
unresolved error

† = algorithm on testing
branch

TLS 1.3:
• Max certificate size: 224-1
• Max signature size: 216-1

OpenSSL 1.1.1:
• Max certificate size:

102,400 bytes, but
runtime enlargeable

• Max signature size: 214

36

1st circle: PQ only
2nd circle: hybrid RSA

= success

= fixable by changing
implementation
parameter

= would violate spec
or otherwise
unresolved error

† = algorithm on testing
branch

OpenSSH maximum
packet size: 218

37

Summary

● Several design choices for hybrid key exchange in network protocols on
negotiation and transmitting public keys, no consensus

● Protocols have size constraints which prevent some schemes from being used

● Implementations may have additional size constraints which affect some schemes,
which can be bypassed with varying degrees of success

38

Extensions and open questions

Remaining Round 2 candidates
● Welcome help in getting code into our

framework – either directly into liboqs
or via PQClean

Constraints in other parts of the protocol
ecosystem
● Other client/server implementations
● Middle boxes

Performance
● Latency and throughput in lab

conditions
● Latency in realistic network conditions

à la [Lan18]
Use in applications
● Tested our OpenSSL experiment with

Apache, nginx, links, OpenVPN, with
reasonable success

● More work to do:
S/MIME, more TLS clients, … 39

Benchmarking PQ crypto in TLS

40

Christian Paquin, Douglas Stebila, Goutam Tamvada. Benchmarking post-quantum cryptography in
TLS. In PQCrypto 2020, to appear. https://eprint.iacr.org/2019/1447

https://eprint.iacr.org/2019/1447

Goals

● Measure effect of network latency and packet loss
rate on handshake completion time for post-
quantum connections of various sizes

● Out of scope:
○ Effect of different CPU speeds from client or server
○ Effect of network bandwidth / throughput 41

Prior Work

2016
Google, with
NewHope in
TLS 1.2

Google, with
“dummy

extensions”

2018 2019
Google and

Cloudflare, with
SIKE and NTRU-
HRSS in TLS 1.3

42

What if you
don’t have
billions of clients
and
millions of servers?

Emulate the
network

+ more control over
experiment parameters

+ easier to isolate
effects of network

characteristics

– loss in realism

43

Network emulation setup

● Linux kernel network namespaces
○ Independent copies of the kernel’s network stack, each having its own routes,

addresses, firewall rules, etc.

● Virtual ethernet devices created in pairs – one outgoing, one
incoming

● netem (network emulation) kernel module
○ Can instruct kernel to apply certain delay to packets
○ Can instruct kernel to randomly drop packets with a certain rate

44

Experiment setup

s_timer

s_timer

s_timer

s_timer

nginx

nginx

All programs were built against
OQS-OpenSSL 45

Network latencies

46

47
https://telemetry.mozilla.org

Algorithms in experiment

48

Key exchange
median, lower network latencies

49

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

Key exchange
95th percentile, lower network latencies

50

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

Key exchange
percentiles,
FrodoKEM-640-AES

51

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

Key exchange
median and 95th

percentiles,
higher network
latencies

52

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

Authentication
median and 95th

percentiles,
lower network
latencies

53

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

Authentication
median and 95th

percentiles,
higher network
latencies

54

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

Exploring post-quantum cryptography in
Internet protocols

Douglas Stebila

https://eprint.iacr.org/2019/858

https://eprint.iacr.org/2019/1356

https://eprint.iacr.org/2019/1447

https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-02
Netherlands Crypto Working Group • 2020-02-07

https://openquantumsafe.org/

https://github.com/open-quantum-safe/

https://www.douglas.stebila.ca/

https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2019/1447
https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-02
https://github.com/open-quantum-safe/
https://github.com/open-quantum-safe/
https://www.douglas.stebila.ca/

Appendix

56

Design issues for hybrid key exchange
in TLS 1.3

64

Douglas Stebila, Scott Fluhrer, Shay Gueron. Design issues for hybrid key exchange in TLS
1.3. Internet-Draft. Internet Engineering Task Force, July 2019. https://tools.ietf.org/html/draft-stebila-tls-
hybrid-design-01

https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-01

Follows draft-whyte-qsh-tls13-06

NamedGroup enum for
supported_groups extension contains
“hybrid markers” with no pre-defined
meaning

Each hybrid marker points to a
mapping in an extension, which lists
which combinations the client
proposes; between 2 and 10 algorithms
permitted

Candidate Instantiation 1 – Negotiation

supported_groups:
hybrid_marker00, hybrid_marker01,
hybrid_marker02, secp256r1

HybridExtension:
• hybrid_marker00 →
secp256r1+sike123+ntru456
• hybrid_marker01 → secp256r1+sike123
• hybrid_marker02 →
secp256r1+ntru456

65

Server’s key shares:

● Respond with
NamedGroup = hybrid_markerXX

● Existing KeyShareServerHello only
permits one key share

● => Squeeze 2+ key shares into
single key share field by
concatenation

struct {
KeyShareEntry key_share<2..10>;

} HybridKeyShare;

Client’s key shares:

● Existing KeyShareClientHello
allows multiple key shares

● => Send 1 key share per algorithm
○ secp256r1, sike123, ntru456

● No changes required to data
structures or logic

Candidate Instantiation 1 – Conveying keyshares

66

Candidate
Instantiation 1 –
Combining keys

67

Follows draft-kiefer-tls-ecdhe-sidh-00,
Open Quantum Safe implementation, ...

New NamedGroup element
standardized for each desired
combination

No internal structure to new code
points

Candidate Instantiation 2 – Negotiation

68

KeyShareClientHello contains an entry for each code point listed in supported_groups

KeyShareServerHello contains a single entry for the chosen code point

KeyShareEntry for hybrid code points is an opaque string parsed with the following
internal structure:

struct {
KeyShareEntry key_share<2..10>;

} HybridKeyShare;

Candidate Instantiation 2 – Conveying keyshares

69

Candidate Instantiation 1

Adds new negotiation logic and
ClientHello extensions

Does not result in duplicate key shares
or combinatorial explosion of
NamedGroups

No change in negotiation logic or data
structures

No change to protocol logic:
concatenation of key shares and KDFing
shared secrets can be handled
“internally” to a method

Results in combinatorial explosion of
NamedGroups

Duplicate key shares will be sent

Candidate Instantiation 2

70

Benchmarking PQ crypto in TLS

71

Christian Paquin, Douglas Stebila, Goutam Tamvada. Benchmarking post-quantum cryptography in
TLS. In PQCrypto 2020, to appear. https://eprint.iacr.org/2019/1447

https://eprint.iacr.org/2019/1447

Key exchange
percentiles,
SIKE-p434

72

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

Key exchange
percentiles,
Kyber512-90s

73

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

Key exchange
percentiles,
ECDH-p256

74

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

Authentication
percentiles,
Picnic L1 FS

75

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

Authentication
percentiles,
qTesla-P-I

76

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

Authentication
percentiles,
Dilithium2

77

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

Authentication
percentiles,
ECDSA-p256

78

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

Data-centre-
to-data-centre

web page latency
as a function of
page size, median

79

Data-centre-
to-data-centre

web page latency
as a function of
page size,
95th percentile

80

