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Post-quantum crypto @ Waterloo

● UW involved in 6 NIST Round 2 submissions:
○ CRYSTALS-Kyber, FrodoKEM, NewHope, NTRU, SIKE; qTESLA

● Large team led by David Jao working on isogeny-based crypto
● Quantum cryptanalysis led by Michele Mosca
● CryptoWorks21 training program for quantum-resistant 

cryptography
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Motivating post-quantum cryptography
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TLS (Transport Layer Security) protocol
a.k.a. SSL (Secure Sockets Layer)

• The “s” in “https”
• The most important cryptographic protocol on the Internet

— used to secure billions of connections every day.
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Cryptographic building blocks
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Public-key 
cryptography

RSA signatures
Elliptic curve 

Diffie–Hellman
key exchange

Symmetric 
cryptography

AES
encryption

AES GCM 
integrity

Based on 
difficulty of 
factoring 

large 
numbers

Based on difficulty of 

computing discrete 
logarithms
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When will a large-scale quantum computer be built?

“I estimate a 1/7 chance of 
breaking RSA-2048 by 2026 
and a 1/2 chance by 2031.”

— Michele Mosca, University of Waterloo
https://eprint.iacr.org/2015/1075

9http://qurope.eu/system/files/u7/93056_Quantum%20Manifesto_WEB.pdf

http://qurope.eu/system/files/u7/93056_Quantum%20Manifesto_WEB.pdf


Post-quantum cryptography
a.k.a. quantum-resistant algorithms

Cryptography believed to be resistant to 
attacks by quantum computers

Uses only classical (non-quantum) 
operations to implement

Not as well-studied as current encryption
● Less confident in its security
● More implementation tradeoffs

Hash-based 
& symmetric

Multivariate 
quadratic

Code-based Lattice-
based

Elliptic curve 
isogenies
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Standardizing post-quantum cryptography

Aug. 2015 (Jan. 2016)

“IAD will initiate a 
transition to quantum 
resistant algorithms in 
the not too distant 
future.”

– NSA Information 
Assurance Directorate, 

Aug. 2015
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NIST Post-quantum Crypto Project timeline
http://www.nist.gov/pqcrypto
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Dec.
2016

Call for PQ
proposals

2022?-25?

PQ standards
ready

Nov.
2017

Submission
deadline

Mar.
2019

Round 2
deadline

Round 1: 
69 schemes

1/3 signatures
2/3 public key encryption

Round 2:
26 schemes
9 signatures

17 public key encryption

Analysis: 2017-202x

???

Round 3?

http://www.nist.gov/pqcrypto


NIST Post-quantum Crypto Project timeline
http://www.nist.gov/pqcrypto
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2031

Mosca – 1/2 chance
of breaking RSA-2048

2026

Mosca – 1/7 chance
of breaking RSA-2048

2035

EU commission
universal quantum 

computer

Retroactive decryption: 
record encrypted communication 
now, decrypt it once you have a 

quantum computer

Dec.
2016

Call for PQ
proposals

2022?-25?

PQ standards
ready

Nov.
2017

Submission
deadline

Mar.
2019

Round 2
deadline

http://www.nist.gov/pqcrypto


NIST Post-quantum Crypto Project timeline
http://www.nist.gov/pqcrypto
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2031

Mosca – 1/2 chance
of breaking RSA-2048

2026

Mosca – 1/7 chance
of breaking RSA-2048

2035

EU commission
– universal quantum 

computer

2022?-25?

PQ standards
ready

1995

SHA-1
standardized

2001

SHA-2
standardized

2005

SHA-1
weakened

16 years

Aug.
2017

Jan.
2017

Browsers stop accepting
SHA-1 certificates

http://www.nist.gov/pqcrypto


“Hybrid”
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“Hybrid” or “composite” or “dual” or “multi-
algorithm” cryptography

● Use pre-quantum and post-
quantum algorithms together

● Secure if either one remains 
unbroken

Why hybrid?
● Potential post-quantum security 

for early adopters
● Maintain compliance with older 

standards (e.g. FIPS)
● Reduce risk from uncertainty on 

PQ assumptions/parameters
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Hybrid ciphersuites

● Need PQ key exchange before we need PQ authentication because future quantum 
computers could retroactively decrypt, but not retroactively impersonate

17

Key exchange Authentication

1 Hybrid traditional + PQ Single traditional

2 Hybrid traditional + PQ Hybrid traditional + PQ

3 Single PQ Single traditional

4 Single PQ Single PQ

Likely focus 
for next 5-10 years



Hybrid key exchange and authentication to date

● Hybrid key exchange Internet-Drafts at IETF:
○ TLS 1.2: Schanck, Whyte, Zhang 2016; Amazon 2019
○ TLS 1.3: Schanck, Stebila 2017; Whyte, Zhang, Fluhrer, Garcia-Morchon 2017; Kiefer, 

Kwiatkowski 2018; Stebila, Fluhrer, Gueron 2019
○ IPsec / IKEv2: Tjhai, Thomlinson, Bartlet, Fluhrer, Geest, Garcia-Morchon, Smyslov 2019

● Hybrid key exchange xperimental implementations: 
○ Google CECPQ1, CECPQ2; Open Quantum Safe; CECPQ2b; …

● Hybrid X.509 certificates:
○ Truskovsky, Van Geest, Fluhrer, Kampanakis, Ounsworth, Mister 2018

18



Design issues for hybrid key exchange 
in TLS 1.3

19

Douglas Stebila, Scott Fluhrer, Shay Gueron. Design issues for hybrid key exchange in TLS 
1.3. Internet-Draft. Internet Engineering Task Force, July 2019. https://tools.ietf.org/html/draft-stebila-tls-
hybrid-design-01

https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-01


Goals for hybridization

1. Backwards compatibility
○ Hybrid-aware client, hybrid-aware server

○ Hybrid-aware client, non-hybrid-aware server

○ Non-hybrid-aware client, hybrid-aware server

2. Low computational overhead
3. Low latency
4. No extra round trips
5. No duplicate information

● How to negotiate algorithms
● How to convey cryptographic data 

(public keys / ciphertexts)
● How to combine keying material

Design options

20



Negotiation: How many algorithms?

2 ≥ 2
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Negotiation: How to indicate which algorithms to use

Negotiate each algorithm 
individually

1. Standardize a name for each 
algorithm

2. Provide a data structure for 
conveying supported algorithms

3. Implement logic negotiating which 
combination

Negotiate pre-defined 
combinations of algorithms

1. Standardize a name for each 
desired combination

● Can use existing negotiation 
data structures and logic

22

Which option is preferred may 
depend on how many algorithms are 
ultimately standardized.



Conveying cryptographic data (public keys / ciphertexts)

1) Separate public keys
● For each supported algorithm, 

send each public key / ciphertext in 
its own parseable data structure

2) Concatenate public keys
● For each supported combination, 

concatenate its public keys / 
ciphertext into an opaque data 
structure

#1 requires protocol and 
implementation changes

#2 abstracts combinations into “just 
another single algorithm”
But #2 can also lead to sending 
duplicate values
● nistp256+bike1l1
● nistp256+sikep403
● nistp256+frodo640aes
● sikep403+frodo640aes 23

3x nistp256, 
2x sikep403, 
2x frodo640aes 
public keys



Combining keying material

Top requirement: needs to provide 
“robust” security: 
● Final session key should be secure 

as long as at least one of the 
ingredient keys is unbroken  

● (Most obvious techniques are fine, 
though with some subtleties; see 
Giacon, Heuer, Poettering PKC’18,
Bindel et al. PQCrypto 2019, … .)

● XOR keys
● Concatenate keys and use directly
● Concatenate keys then apply a 

hash function / KDF
● Extend the protocol’s 

“key schedule” with 
new stages for each key

● Insert the 2nd key into an unused 
spot in the protocol’s key schedule

24



Draft-00 
@ IETF 104

draft-stebila-tls-hybrid-design-00

Contained a “menu” of design options 
along several axes

1. How to negotiate which algorithms?
2. How many algorithms?
3. How to transmit public key shares?
4. How to combine secrets?

Feedback from working group:

● Avoid changes to key schedule
● Present one or two instantiations
● Specific feedback on some aspects
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Draft-01
@ IETF 105

draft-stebila-tls-hybrid-design-01

Kept menu of design choices

Constructed two candidate 
instantiations from menu for 
discussion

1. Directly negotiate each hybrid 
algorithm; separate key shares

2. Code points for pre-defined 
combinations; concatenated key 
shares

Additional KDF-based options for 
combining keys

26



Emerging consensus?

● Combining keying material: 
○ Consensus: (unambiguously) concatenate keys then apply hash function / KDF

● Number of algorithms: 2 vs ≥ 2:
○ TLS working group leaning to 2

● Negotiation: negotiate algorithms separately versus in combination:
○ All(?) implementations to date have negotiated pre-defined combinations
○ TLS working group leaning to “in combination”

● Conveying public keys: separately versus concatenated:
○ All(?) implementations to date have used concatenation
○ TLS working group leaning to (unambiguous) concatenation

27
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Open Quantum Safe Project

29

liboqs
key exchange / KEMs signatures

isogenies code-based lattice-based multi-variate 
polynomial

hash-based / 
symmetric

OpenSSL
• TLS 1.2
• TLS 1.3

BoringSSL
Open
SSH

Language 
SDKs

C#, C++, 
Go, Python

Apache 
httpd nginx curl, 

links
Open
VPN

C language library, 
common API
• x86/x64 (Linux, Mac, 

Windows)
• ARM (Android, 

Linux)

Integration into forks of 
widely used open-
source projects

Use in applications

PQClean

Standalone C 
reference 
implementations, 
heavily tested

Chromium



OQS team

● Project leads
○ Douglas Stebila (Waterloo)
○ Michele Mosca (Waterloo)

● Industry collaborators
○ Amazon Web Services

○ Cisco Systems
○ evolutionQ
○ IBM Research

○ Microsoft Research

● Individual contributors

● Financial support
○ Government of Canada

§ NSERC Discoverry

§ Tutte Institute
○ Amazon Web Services

● In-kind contributions of 
developer time from industry 
collaborators

30



liboqs

● C library with common API for 
post-quantum signature schemes 
and key encapsulation 
mechanisms

● MIT License
● Builds on Windows, macOS, Linux; 

x86_64, ARM v8

● 43 key encapsulation mechanisms 
from 7 NIST Round 2 candidates

● 52 signature schemes from 5 NIST 
Round 2 candidates

31



List of algorithms

Key encapsulation mechanisms
● BIKE: BIKE1-L1-CPA, BIKE1-L3-CPA, BIKE1-L1-FO, BIKE1-

L3-FO
● FrodoKEM: FrodoKEM-640-AES, FrodoKEM-640-SHAKE, 

FrodoKEM-976-AES, FrodoKEM-976-SHAKE, FrodoKEM-
1344-AES, FrodoKEM-1344-SHAKE

● Kyber: Kyber512, Kyber768, Kyber1024, Kyber512-90s, 
Kyber768-90s, Kyber1024-90s

● NewHope: NewHope-512-CCA, NewHope-1024-CCA
● NTRU: NTRU-HPS-2048-509, NTRU-HPS-2048-677, NTRU-

HPS-4096-821, NTRU-HRSS-701
● SABER: LightSaber-KEM, Saber-KEM, FireSaber-KEM
● SIKE: SIDH-p434, SIDH-p503, SIDH-p610, SIDH-p751, 

SIKE-p434, SIKE-p503, SIKE-p610, SIKE-p751, SIDH-p434-
compressed, SIDH-p503-compressed, SIDH-p610-
compressed, SIDH-p751-compressed, SIKE-p434-
compressed, SIKE-p503-compressed, SIKE-p610-
compressed, SIKE-p751-compressed

Signature schemes
● Dilithium: Dilithium2, Dilithium3, Dilithium4
● MQDSS: MQDSS-31-48, MQDSS-31-64
● Picnic: Picnic-L1-FS, Picnic-L1-UR, Picnic-L3-FS, Picnic-L3-UR, 

Picnic-L5-FS, Picnic-L5-UR, Picnic2-L1-FS, Picnic2-L3-FS, 
Picnic2-L5-FS

● qTesla: qTesla-p-I, qTesla-p-III
● SPHINCS+-Haraka: SPHINCS+-Haraka-128f-robust, SPHINCS+-

Haraka-128f-simple, SPHINCS+-Haraka-128s-robust, 
SPHINCS+-Haraka-128s-simple, SPHINCS+-Haraka-192f-robust, 
SPHINCS+-Haraka-192f-simple, SPHINCS+-Haraka-192s-robust, 
SPHINCS+-Haraka-192s-simple, SPHINCS+-Haraka-256f-robust, 
SPHINCS+-Haraka-256f-simple, SPHINCS+-Haraka-256s-robust, 
SPHINCS+-Haraka-256s-simple

● SPHINCS+-SHA256: SPHINCS+-SHA256-128f-robust, 
SPHINCS+-SHA256-128f-simple, SPHINCS+-SHA256-128s-
robust, SPHINCS+-SHA256-128s-simple, SPHINCS+-SHA256-
192f-robust, SPHINCS+-SHA256-192f-simple, SPHINCS+-
SHA256-192s-robust, SPHINCS+-SHA256-192s-simple, 
SPHINCS+-SHA256-256f-robust, SPHINCS+-SHA256-256f-
simple, SPHINCS+-SHA256-256s-robust, SPHINCS+-SHA256-
256s-simple

● SPHINCS+-SHAKE256: SPHINCS+-SHAKE256-128f-robust, 
SPHINCS+-SHAKE256-128f-simple, SPHINCS+-SHAKE256-128s-
robust, SPHINCS+-SHAKE256-128s-simple, SPHINCS+-
SHAKE256-192f-robust, SPHINCS+-SHAKE256-192f-simple, 
SPHINCS+-SHAKE256-192s-robust, SPHINCS+-SHAKE256-192s-
simple, SPHINCS+-SHAKE256-256f-robust, SPHINCS+-
SHAKE256-256f-simple, SPHINCS+-SHAKE256-256s-robust, 
SPHINCS+-SHAKE256-256s-simple
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PQClean

● New, sister project to OQS
● Goal: standalone, high-quality C 

reference implementations of PQ 
algorithms
○ Lots of automated code analysis and 

continuous integration testing

○ Builds tested on little-endian and big-endian

● MIT License and public domain

● Not a library, but easy to pull out 
code that can be incorporated into 
a library
○ liboqs consumes implementations from 

PQClean

● In collaboration with Peter 
Schwabe and team at Radboud 
University, Netherlands

https://github.com/PQClean/PQClean
33
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OpenSSL

● OQS fork of OpenSSL 1.0.2
○ PQ and hybrid key exchange in TLS 1.2

● OQS fork of OpenSSL 1.1.1
○ PQ and hybrid key exchange in TLS 1.3

○ PQ and hybrid certificates and signature authentication in TLS 1.3

● Can be readily used with applications that rely on OpenSSL with few/no 
modifications

34



OQS demo: OpenSSL
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BoringSSL

● OQS fork of BoringSSL (which is a fork of 
OpenSSL)
○ PQ and hybrid key exchange in TLS 1.3

● After a few modifications, can be used with 
Chromium!

36



OQS demo: Chromium with BoringSSL talking to Apache
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OpenSSH

● OQS fork of OpenSSH
○ PQ and hybrid key exchange
○ PQ and hybrid signature authentication

38



OQS demo: OpenSSH

39



Using OQS

● All open source software available on GitHub
● Instructions for building on Linux, macOS, and Windows
● Docker images available for building and running OQS-reliant applications

○ Apache httpd
○ curl

○ nginx
○ OpenSSH

40



Prototyping post-quantum and hybrid key 
exchange and authentication in TLS and SSH

41

Eric Crockett, Christian Paquin, Douglas Stebila. Prototyping post-quantum and hybrid key exchange 
and authentication in TLS and SSH. In NIST 2nd Post-Quantum Cryptography Standardization 
Conference 2019. August 2019. https://eprint.iacr.org/2019/858

https://eprint.iacr.org/2019/858


Case study 1: TLS 1.2 in Amazon s2n

● Multi-level negotiation following TLS 1.2 design style:
○ Top-level ciphersuite with algorithm family: e.g. 

TLS_ECDHE_SIKE_ECDSA_WITH_AES_256_GCM_SHA384

○ Extensions used to negotiate parameterization within family:
§ 1 extension for which ECDH elliptic curve: nistp256, curve25519, …

§ 1 extension for which PQ parameterization: sikep403, sikep504, …

● Session key: concatenate session keys and apply KDF with public key/ciphertext as 
KDF label 

● Experimental results: successfully implemented using nistp256+{bike1l1, sikep503}

42



Case studies 2, 3, 4:
TLS 1.2 in OpenSSL 1.0.2
TLS 1.3 in OpenSSL 1.1.1
SSH v2 in OpenSSH 7.9

● Negotiate pairs of algorithms in pre-defined combinations
● Session key: concatenate session keys and use directly in key schedule

● Easy implementation, no change to negotiation logic

● Based on implementations in liboqs
○ KEMs: 9 of 17 (BIKE round 1, FrodoKEM, Kyber, LEDAcrypt, NewHope, NTRU, NTS (1 variant), Saber, SIKE)

○ Signature schemes: 6 of 9 (Dilithium, MQDSS, Picnic, qTesla (round 1), Rainbow, SPHINCS+)
43



1st circle: PQ only
2nd circle: hybrid ECDH

= success

= fixable by changing
implementation 
parameter

= would violate spec
or otherwise 
unresolved error

† = algorithm on testing 
branch

FrodoKEM 976, 1344 
• OpenSSL 1.0.2 / TLS 1.2:

too large for a pre-
programmed buffer size, 
but easily fixed by 
increasing one buffer size

• OpenSSL 1.1.1 / TLS 1.3:
same

NTS-KEM
• OpenSSL 1.0.2 / TLS 1.2:

theoretically within spec’s 
limitation of 224 bytes, but 
buffer sizes that large 
caused failures we 
couldn’t track down

• OpenSSL 1.1.1 / TLS 1.3:
too large for spec 
(216-1 bytes)

• OpenSSH: theoretically 
within spec but not within 
RFC’s “SHOULD”, but 
couldn’t resolve bugs 44



1st circle: PQ only
2nd circle: hybrid RSA

= success

= fixable by changing
implementation 
parameter

= would violate spec
or otherwise 
unresolved error

† = algorithm on testing 
branch

TLS 1.3:
• Max certificate size: 224-1
• Max signature size: 216-1

OpenSSL 1.1.1:
• Max certificate size: 

102,400 bytes, but 
runtime enlargeable

• Max signature size: 214

45



1st circle: PQ only
2nd circle: hybrid RSA

= success

= fixable by changing
implementation 
parameter

= would violate spec
or otherwise 
unresolved error

† = algorithm on testing 
branch

OpenSSH maximum 
packet size: 218

46



Summary

● Several design choices for hybrid key exchange in network protocols on 
negotiation and transmitting public keys, no consensus

● Protocols have size constraints which prevent some schemes from being used

● Implementations may have additional size constraints which affect some schemes, 
which can be bypassed with varying degrees of success

47



Extensions and open questions

Remaining Round 2 candidates
● Welcome help in getting code into our 

framework – either directly into liboqs
or via PQClean

Constraints in other parts of the protocol 
ecosystem
● Other client/server implementations
● Middle boxes

Performance
● Latency and throughput in lab 

conditions
● Latency in realistic network conditions 

à la [Lan18]
Use in applications
● Tested our OpenSSL experiment with 

Apache, nginx, links, OpenVPN, with 
reasonable success

● More work to do: 
S/MIME, more TLS clients, … 48



Benchmarking PQ crypto in TLS

49

Christian Paquin, Douglas Stebila, Goutam Tamvada. Benchmarking post-quantum cryptography in 
TLS. November, 2019. https://eprint.iacr.org/2019/1447

https://eprint.iacr.org/2019/1447


Prior Work

2016
Google, with 
NewHope in 
TLS 1.2

Google, with 
“dummy 

extensions”

2018 2019
Google and 

Cloudflare, with 
SIKE and NTRU-
HRSS in TLS 1.3

50



What if you 
don’t have 
billions of clients 
and 
millions of servers?

Emulate the 
network

+ more control over 
experiment parameters

+ easier to isolate 
effects of network 

characteristics

– loss in realism

51



Experiment setup

s_timer

s_timer

s_timer

s_timer

nginx

nginx

All programs were built against 
OQS-OpenSSL 52



Key exchange

handshake latency 
as a function of 
packet loss rate

53



Authentication

handshake latency 
as a function of 
packet loss rate
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Challenges in proving post-quantum key 
exchanges based on key encapsulation 

mechanisms

55

Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, Douglas Stebila. Challenges in 
proving post-quantum key exchanges based on key encapsulation mechanisms. Technical report. 
November 2019. https://eprint.iacr.org/2019/1356

https://eprint.iacr.org/2019/1356


Implicitly authenticated key exchange

Idea: Use static DH + ephemeral DH rather than signatures + ephemeral DH

Examples:
○ TLS 1.2 static DH

○ OPTLS (predecessor to TLS 1.3)

○ Signal X3DH handshake

○ QUIC original handshake

○ Many protocols in the academic literature

PQ: Use long-term KEM + ephemeral KEM rather than signatures + ephemeral KEM
● Potentially save space since many PQ signatures are bigger than PQ KEMs 56



DH is too awesome

Diffie–Hellman is very flexible:
● Different message flows: 

serial versus parallel
● Key reuse
● Same cryptographic object for 

different purposes
● Range of cryptographic 

assumptions: 
from plain CDH and DDH 
up to interactive PRF-ODH

KEMs are not flexible:
● Encapsulator needs to know the 

public key against which they’re 
encapsulating

● Most PQ KEMs not secure against 
key reuse without protection 
(Fujisaki–Okamoto transform)

● No known efficient methods for 
static–static KEM agreement (FO 
transform gets in the way) 57



Case study: TLS 1.3

58

Client Server

Hello, ephemeral DH pk

Ephemeral DH pk, 
certificate with long-term signing pk, 

signature



Case study: TLS 1.3 implicitly authenticated DH

59

Client Server

Hello, ephemeral DH pk

Ephemeral DH pk, 
certificate with long-term DH pk

Session key = H(ephemeral-ephemeral, ephemeral-static)



Case study: TLS 1.3 implicitly authenticated KEMs

60

Client Server

Hello, ephemeral KEM pk

Ephemeral KEM ciphertext, 
certificate with long-term KEM pk

Session key = H(ephemeral-ephemeral, ephemeral-static)

Ciphertext for long-term KEM So we need an 
extra round trip

Would like to use this 
with the server’s long-
term KEM pk but don’t 

know it yet



Idea: “split KEMs”

● Some LWE-based KEMs (Lindner–
Peikert/Ding style) have ciphertexts 
part of which could be treated as a 
public key

● So order of public key and 
encapsulation could be partially 
swapped or separated

61



LWE as a split KEM

● Some LWE-based KEMs (Lindner–
Peikert/Ding style) have ciphertexts 
part of which could be treated as a 
public key

● So order of public key and 
encapsulation could be partially 
swapped or separated

● Not a full solution: couldn’t figure 
out how to achieve active (CCA) 
security without FO transform

62



Wrapping up

63



Some questions
for adoption

● Hybrid key exchange:
2 or ≥ 2 algorithms?

● What level of 
network 
performance is 
acceptable?
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Some questions 
for academia

● Is it safe to use an 
IND-CPA KEM for 
ephemeral key 
exchange in TLS 1.3?

● Can CCA-secure split 
KEMs be 
instantiated?

65
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Appendix
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Hybrid key encapsulation mechanisms and 
authenticated key exchange

68

Nina Bindel, Jacqueline Brendel, Marc Fischlin, Brian Goncalves, Douglas Stebila. Hybrid key 
encapsulation mechanisms and authenticated key exchange. In Jintai Ding, Rainer Steinwandt, 
editors, Proc. 10th International Conference on Post-Quantum Cryptography (PQCrypto) 2019, LNCS. 
Springer, May 2019. https://eprint.iacr.org/2019/858

https://eprint.iacr.org/2019/858


Safely combining KEMs

● How to safely combine into single KEM such that this hybrid preserves security, 
as long as one of the two input schemes remains secure

69

KEM 1

c1 , K1

KEM 2

c2 , K2

Hybrid 
KEM

c , K



Existing options

● XOR
○ K = K1 XOR K2

○ Preserves IND-CPA security but not IND-CCA security (mix and match attack)

● XOR with transcript (Giacon et al. PKC 2018)
○ K = H(K1 XOR K2, C1 || C2)
○ Preserves IND-CCA security if H is a random oracle

● Concatenation (Giacon et al. PKC 2018)
○ K = H(K1 || K2, C1 || C2)

○ Preserves IND-CCA security if H is a random oracle

70



The XOR-then-MAC Combiner

● Add MAC τ = MAC(c)

● Preserves IND-CCA security under the standard model assumption that MAC is
secure

● Protocols (e.g. TLS) often compute MAC over transcript anyways (may replace the 
MAC here)

K || KMAC ← K1 XOR K2

c = (c1, c2 , $)
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dualPRF Combiner

● dualPRF Security:  both dPRF(k,·)  and
dPRF(·,x) are pseudorandom functions

● Models concatenation-based TLS 1.3 hybrid 
drafts

● HKDF is a dual PRF
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K = PRF(dPRF(K1, K2),c)
c = (c1, c2 )



dualPRF Combiner
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ExtExp

K = PRF(dPRF(K1, K2),c)
c = (c1, c2 )



Nested dualPRF Combiner

● dualPRF combiner with additional preprocessing step

● Inspired by the TLS 1.3 key schedule
○ Models TLS 1.3 hybrid draft by Schanck and Stebila
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Ke = Ext(0, K1)

K = PRF(dPRF(Ke, K2),c)



Design issues for hybrid key exchange 
in TLS 1.3

75

Douglas Stebila, Scott Fluhrer, Shay Gueron. Design issues for hybrid key exchange in TLS 
1.3. Internet-Draft. Internet Engineering Task Force, July 2019. https://tools.ietf.org/html/draft-stebila-tls-
hybrid-design-01

https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-01


Follows draft-whyte-qsh-tls13-06

NamedGroup enum for 
supported_groups extension contains 
“hybrid markers” with no pre-defined 
meaning

Each hybrid marker points to a 
mapping in an extension, which lists 
which combinations the client 
proposes; between 2 and 10 algorithms 
permitted

Candidate Instantiation 1 – Negotiation

supported_groups: 
hybrid_marker00, hybrid_marker01, 
hybrid_marker02, secp256r1

HybridExtension:
• hybrid_marker00 → 
secp256r1+sike123+ntru456
• hybrid_marker01 → secp256r1+sike123
• hybrid_marker02 → 
secp256r1+ntru456
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Server’s key shares:

● Respond with 
NamedGroup  = hybrid_markerXX

● Existing KeyShareServerHello only 
permits one key share

● => Squeeze 2+ key shares into 
single key share field by 
concatenation

struct {
KeyShareEntry key_share<2..10>;

} HybridKeyShare;

Client’s key shares:

● Existing KeyShareClientHello 
allows multiple key shares

● => Send 1 key share per algorithm
○ secp256r1, sike123, ntru456

● No changes required to data 
structures or logic

Candidate Instantiation 1 – Conveying keyshares
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Candidate 
Instantiation 1 –
Combining keys
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Follows draft-kiefer-tls-ecdhe-sidh-00, 
Open Quantum Safe implementation, ...

New NamedGroup element 
standardized for each desired 
combination

No internal structure to new code 
points

Candidate Instantiation 2 – Negotiation
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KeyShareClientHello contains an entry for each code point listed in supported_groups

KeyShareServerHello contains a single entry for the chosen code point

KeyShareEntry for hybrid code points is an opaque string parsed with the following 
internal structure:

struct {
KeyShareEntry key_share<2..10>;

} HybridKeyShare;

Candidate Instantiation 2 – Conveying keyshares
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Candidate Instantiation 1

Adds new negotiation logic and 
ClientHello extensions

Does not result in duplicate key shares 
or combinatorial explosion of 
NamedGroups

No change in negotiation logic or data 
structures

No change to protocol logic: 
concatenation of key shares and KDFing 
shared secrets can be handled 
“internally” to a method

Results in combinatorial explosion of 
NamedGroups

Duplicate key shares will be sent

Candidate Instantiation 2
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Benchmarking PQ crypto in TLS

82

Christian Paquin, Douglas Stebila, Goutam Tamvada. Benchmarking post-quantum cryptography in 
TLS. November, 2019. https://eprint.iacr.org/2019/1447

https://eprint.iacr.org/2019/1447


Key exchange

handshake latency 
as a function of packet 

loss rate

higher network latency
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Authentication

handshake latency 
as a function of packet 

loss rate

higher network latency
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Data-centre-
to-data-centre

web page latency 
as a function of 

page size
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Data-centre-
to-data-centre

web page latency 
as a function of 

page size

higher network 
latency
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Challenges in proving post-quantum key 
exchanges based on key encapsulation 

mechanisms

87

Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, Douglas Stebila. Challenges in 
proving post-quantum key exchanges based on key encapsulation mechanisms. Technical report. 
November 2019. https://eprint.iacr.org/2019/1356

https://eprint.iacr.org/2019/1356
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Signal X3DH handshake
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Signal
handshake
with KEMs
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Signal 
handshake 
with 
split KEMs
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