

Cryptography and finance: overview, trends, the quantum threat

Douglas Stebila

Funding acknowledgements:

Ontario Securities Commission Academy • September 12, 2018 https://www.douglas.stebila.ca/research/presentations/

Outline

- Cryptography in finance
- Background on cryptography
- •Examples of cryptography in finance
- Recent trends in cryptography
- •The threat of quantum computing

Cryptography in finance

Cryptography in finance

- Public data feeds
- Electronic signatures
- Inter-bank communications
- Intra-bank communications
 - Virtual private networks (VPNs)
 - PKI
- Encrypted databases, hard drives
- Merchant-bank communications
- Customer-bank communications
 - EMV Chip-and-PIN
 - Online banking
- Blockchain

Who mandates the use of information security?

Privacy legislation

- PIPEDA federally regulated private sector organizations
- Privacy Act federally regulated public bodies

PIPEDA principle #7

- An organization should use safeguards appropriate to the sensitivity of the information
 - Legislation doesn't specify which measures to apply

Who mandates the use of information security?

Industry bodies

- Payment Card Industry Data Security Standard (PCI-DSS)
 - Specifies technological measures to be used for systems that process credit card data

Who mandates the use of information security?

Principles	 Legislation PIPEDA, Privacy Act, Regulators
Policies	 Standards organizations: ISO, Industry bodies: PCI-DSS, ANSI, NIST,
Tools	 Technology standards organizations IETF, ANSI,
Mathematics	 Specialist organizations NIST, CFRG

Background on cryptography

Security goals

PATTER THE PATTER

ATTACK AT DAWN

XQQXZH XQ AXTK

Frequency analysis

World War II – The Enigma machine

Modern ciphers

Federal Information Processing Standards Publication 197

November 26, 2001

Announcing the

ADVANCED ENCRYPTION STANDARD (AES)

Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National Institute of Standards and Technology (NIST) after approval by the Secretary of Commerce pursuant to Section 5131 of the Information Technology Management Reform Act of 1996 (Public Law 104-106) and the Computer Security Act of 1987 (Public Law 100-235).

1. Name of Standard. Advanced Encryption Standard (AES) (FIPS PUB 197).

2. Category of Standard. Computer Security Standard, Cryptography.

3. Explanation. The Advanced Encryption Standard (AES) specifies a FIPS-approved cryptographic algorithm that can be used to protect electronic data. The AES algorithm is a symmetric block cipher that can encrypt (encipher) and decrypt (decipher) information. Encryption converts data to an unintelligible form called ciphertext; decrypting the ciphertext converts the data back into its original form, called plaintext.

The AES algorithm is capable of using cryptographic keys of 128, 192, and 256 bits to encrypt and decrypt data in blocks of 128 bits.

4. Approving Authority. Secretary of Commerce.

5. Maintenance Agency. Department of Commerce, National Institute of Standards and Technology, Information Technology Laboratory (ITL).

6. Applicability. This standard may be used by Federal departments and agencies when an agency determines that sensitive (unclassified) information (as defined in P. L. 100-235) requires cryptographic protection.

Other FIPS-approved cryptographic algorithms may be used in addition to, or in lieu of, this standard. Federal agencies or departments that use cryptographic devices for protecting classified information can use those devices for protecting sensitive (unclassified) information in lieu of this standard.

In addition, this standard may be adopted and used by non-Federal Government organizations. Such use is encouraged when it provides the desired security for commercial and private organizations.

Kerckhoff's principle:

 Security should not depend on keeping the design of the system secret.

Only a (small) key should have to be kept secret.

Symmetric encryption

Public key cryptography

A pair of related keys:

- public key
- private key

Publish the public key

Anyone can use the public key to encrypt Only the person with the private key can decrypt

Public key cryptography – RSA algorithm based on multiplying large secret prime numbers

Public key cryptography – RSA algorithm Given the product

2681561585988519419914804999641169225495873164118 47867554471228874435280602338222284494 52315157095935507132022207254808 12526291 Don't know any efficient way to do this

Find one of the original factors

Security goals

Cryptography in finance

1) Confidentiality & integrity for data in transit

- Inter-bank communications
- Intra-bank communications
 - Virtual private networks (VPNs)
 - PKI
- Merchant-bank communications
- Customer-bank communications
 - EMV Chip-and-PIN
 - Online banking

TLS (Transport Layer Security) protocol

a.k.a. SSL (Secure Sockets Layer)

- The "s" in "https"
- The most important cryptographic protocol on the Internet — used to secure billions of connections every day.

Cryptographic building blocks

Connection - secure (strong TLS 1.2)

The connection to this site is encrypted and authenticated using TLS 1.2 (a strong protocol), ECDHE RSA with P-256 (a strong key exchange), and AES 128 GCM (a strong cipher).

2) Confidentiality for data at rest

Encrypted databases, hard drives

ORACLE® DATABASE

Windows 10 BitLocker

Database encryption Cloud storage encryption Hard drive encryption

3) Integrity of (public) data

- Electronic signatures
- Public data feeds
- Blockchain

Cryptocurrencies / cryptoassets

- Cryptography used to maintain a distributed ledger ("blockchain")
 - Digital signatures used to authenticate messages on the ledger
 - Cryptographic "puzzles" used to incentivize consensus about ledger maintainers ("miners")

• Cryptocurrency:

- Messages on the ledger are parties authorizing transfer of tokens from themselves to another party
- Parties are typically identified by cryptographic key, not by any real world identity

Tension between security and privacy

Enacting security requires visibility into potential attacks, ability to investigate leads, aggregate data

Privacy: ability of an entity to control access to information about themselves

 Cryptography helps security and privacy by preventing adversaries from unauthorized reading or modification of information

 Cryptography hinders security by decreasing visibility into attacks and making investigation harder

Backdoors, lawful access: "going dark"

- Let's design an encryption scheme that only the good guys can break
- Let's use a secure encryption scheme but give the good guys the key to decrypt
- Let's design a secure communication system that can be tapped by law enforcement

- Backdoors and key escrow introduce their own risks: there's a "golden ticket" key that opens everything
- Can we really keep that safe?
 - The cryptographic key
 - The procedures around its use
- Cryptographers and information security researchers almost universally believe it's not possible

Recent trends in cryptography

Recent trend 1: upgrading TLS

- TLS is the communications protocol used ubiquitously on the web
- Newest version (TLS 1.3) just standardized in August 2018
- Browser and server vendors already deploying
- Likely to become required for PCI-DSS, HIPAA, ... in the next 5 years

Recent trend 2: encrypted cloud processing

- Lots of companies store data encrypted on cloud servers
- But it has to be decrypted in order to be processed so the cloud server can see the data
- "Fully homomorphic encryption" would allow cloud server to do computations on the encrypted data without seeing the original values
- Theoretically possible, but practically inefficient right now
 - 5+ years before viable

Recent trend 3: quantum computing

Large-scale general-purpose quantum computers could break some encryption schemes

Need to migrate encryption to quantum-resistant algorithms

35

The threat of quantum computing to cryptography

What can go wrong

- Mathematical advances break cryptographic assumptions
- Good cryptography is used improperly in applications and protocols
- Bugs in how good cryptography is implemented in software & hardware

Quantum computing

Represent and process information using **quantum mechanics**

"Classical" computers handle information as **bits**:

• 0 and 1

Quantum computers handle information as **qubits**:

Any "superposition" of 0 and 1

Processing information in superposition can dramatically speed some computations

- Chemical reaction simulations
- Optimization problems
- Arithmetic

But not magic

 Doesn't dramatically speed up all computations

00

סיימסתה

The Quantum Computing Company

www.dwavesys.com

Welcome to the Future Quantum Computing for the Real World Today

~	Scalable q	uantum computers	+				Ę
С	88	uwaterloo.ca/inst	itute-for-quantum-compu	iting/news/scalable-qu	antum-computers-within-reach	\odot	🖻 🗘 🖞
AD	MISSIONS	ABOUT WATERLOO	FACULTIES & ACADEMICS	VERSITY OF TERLOO OFFICES & SERVICES	SUPPORT WATERLOO	Q Search	

INSTITUTE FOR QUANTUM COMPUTING

Institute for Ouantum **Computing home** About IQC Our people Available positions Research Programs Outreach News Events Blog INFORMATION FOR Researchers Students Visitors Media Alumni and friends

🔿 🖻 🖸 🖞 🕙

Institute for Quantum Computing » News » 2017 » September »

Scalable quantum computers within reach

MONDAY, SEPTEMBER 18, 2017

Quantum machine learning and artificial intelligence, quantum-safe cryptography, and simulation of quantum systems all rely on the power of quantum computing.

A team of researchers at the Institute for Quantum Computing (IQC) have taken a step closer to realizing the powerful possibilities of a universal quantum computer. The Laboratory for Digital Quantum Matter, led by faculty member Matteo Mariantoni, is developing technologies for extensible quantum computing architectures based on superconducting quantum devices.

Superconducting quantum circuits have close to zero electrical resistance and offer enhanced efficiency and processing power compared to traditional electrical circuits. Mariantoni's research group uses nanofabrication tools and semiconductor technology to fabricate on-chip superconducting quantum circuits which operate at microwave frequencies.

The source of the quantum information in the superconducting quantum circuit is the qubit. The qubit is similar to an electronic circuit found in a classical computer that is characterized by two states, 0 or 1. However, the qubit can also be prepared in superposition states – both 0 and 1 at the same time – made possible by quantum mechanics.

Quantum mechanical states are fragile and interact easily with their environment. As a result, qubits cannot store information for very long times; the interaction with the environment in the circuit eventually causes the bit to decay, transitioning from one state to another in a random, unwanted fashion. These errors must be mitigated to implement a universal quantum computer.

OSC Academy • 2018-09-12

Stebila • Cryptography and finance: overview, trends, quantum

● ● ● Google's Quantum Dream Mar +			
< > C BB www.technologyreview.com/s/544421/googles	s-quantum-dream-machine/	0 🖻	i i
MIT Technology Review	Log in / Register Search Q Topics+ The Download Magazine Events More+	7 Subscribe	

Intelligent Machines

Google's Quantum Dream Machine

Physicist John Martinis could deliver one of the holy grails of computing to Google-a machine that dramatically speeds up today's applications and makes new ones possible.

🔴 🕘 🌒 📑 Quantum	computing Micr	bsc +		<u>–</u>
< > C 88	Www.micros	oft.com/en-us/quant	um/default.aspx	💟 🖻 🗘
Microsoft	Cloud ~	Mobility ~	Productivity ~	,⊃ Sign in
Quantum	Team	Technology	Resources ~	

Empowering the quantum revolution

Your path to powerful, scalable quantum computing starts here.

Learn more

Join us at the leading edge of opportunity

Quantum computing takes a giant leap forward from today's technologyone that will forever alter our economic, industrial, academic, and societal landscape. In just hours or days, a quantum computer can solve complex problems that would otherwise take billions of years for classical computing to solve. This has massive implications for research in healthcare, energy, environmental systems, smart materials, and more. The quantum economy is coming. And Microsoft envisions a future where customers use Azure for both classical and quantum computing.

Stay updated >

39

March 2017

gartner.com/SmarterWithGartner

Source: Gartner (July 2017) © 2017 Gartner, Inc. and/or its affiliates. All rights reserved.

Quantum threat to information security

Large-scale general-purpose quantum computers could break some encryption schemes

Need to migrate encryption to quantum-resistant algorithms

When should you start the process?

When will a large-scale quantum computer be built?

"I estimate a 1/7 chance of breaking RSA-2048 by 2026 and a 1/2 chance by 2031."

Michele Mosca, University of Waterloo https://eprint.iacr.org/2015/1075

Quantum Technologies Timeline

http://gurope.eu/system/files/u7/93056 Quantum%20Manifesto WEB.pdf

May 2016

Connection - secure (strong TLS 1.2)

The connection to this site is encrypted and authenticated using TLS 1.2 (a strong protocol), ECDHE RSA with P-256 (a strong key exchange), and AES 128 GCM (a strong cipher).

Post-quantum cryptography

a.k.a. quantum-resistant algorithms

Cryptography believed to be resistant to attacks by quantum computers

Uses only classical (non-quantum) operations to implement

Not as well-studied as current encryption

- Less confident in its security
- More implementation tradeoffs

a . . .

Quantum key distribution

Uses quantum mechanics to protect information

Doesn't require a full quantum computer

But does require new communications infrastructure and hardware

=> Not the subject of this talk

Satellite with Reflectors

Uplink

Downlink

Downlink into FOV of receiver

ALRO

Standardizing post-quantum cryptography

"[NSA] will initiate a transition to quantum resistant algorithms in the not too distant future." – Aug. 2015

"NIST has initiated a process to [...] standardize one or more quantumresistant public-key cryptographic algorithms." – 2016

Post-Quantum Cryptography

Post-Quantum Cryptography Standardization

Post-quantum candidate algorithm nominations are due November 30, 2017. Call for Proposals

Call for Proposals Announcement

NIST has initiated a process to solicit, evaluate, and standardize one or more quantum-resistant public-key cryptographic algorithms. Currently, public-key cryptographic algorithms are specified in FIPS 186-4, *Digital Signature Standard*, as well as special publications SP 800-56A Revision 2, *Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography* and SP 800-56B Revision 1, *Recommendation for Pair-Wise Key-Establishment Schemes Using Integer*

Aug. 2015 (Jan. 2016)

Timeline

"Quantum risk assessment"

Identify the organization's reliance on cryptography

- Where is cryptography used?
- What type is used? Public key versus symmetric
- How long does the information need to be secure for?

Track development of quantum technology

Manage technology lifecycle to adopt quantumresistant technologies – "cryptographic agility" Be wary of "snake oil cryptography"

"proprietary algorithm"

"secret technique"

"virtual one-time pad"

"chaos encryption"

"unbreakable"

Focus instead on algorithms progressing through the NIST PQ crypto project

Cautious "hybrid" approach

- Some proposed post-quantum solutions could be broken
- Hybrid approach: use traditional and post-quantum simultaneously to reduce risk during transition
- Focus on algorithms that advance through NIST process

Quantum-safe crypto in Canada

Academia

- Quantum-Safe Canada initiative
 - University of Waterloo (lead)
 - Calgary, Montreal, McGill, Toronto
- Several NIST submissions

Industry

- Post-quantum crypto startups
- QKD startups
- Quantum risk assessment consulting firms

Open Quantum Safe project

Open-source software project for prototyping and testing post-quantum cryptography

https://openquantumsafe.org

Cryptography and finance: overview, trends, the quantum threat

Douglas Stebila

Cryptography used throughout financial infrastructure for protecting information:

- Confidentiality and integrity of data in transit
- Confidentiality of data at rest
- Integrity of (public) data

Trends in cryptography:

- Upgrading communication protocols: in the next 5 years
- Encrypted cloud processing: not yet
- Quantum-resistant cryptography: starting preparing, but wait for standardized solutions

Appendix – Cryptography

Traditional public key encryption: **RSA public key encryption** (2048-bit keys)

Appendix – Blockchain

Basic idea

- 1. There's a public ledger that everyone can read with everyone's balance.
- 2. Alice wants to pay Bob 3 units.
- 3. Alice requests to put a transaction in the ledger saying "Alice pays Bob 3 units."
- 4. The maintainer of the ledger checks
 (a) that Alice has big enough balance and
 (b) that Alice really made the request,
 then records the transaction in the ledger.
- 5. Bob now has a higher balance.

Problems with the basic idea

No anonymity

How to verify someone has authorization to spend from Alice's account?

Who maintains the ledger?

- Use public keys rather than names.
- Use transaction references rather than accounts.
- Use digital signatures to demonstrate ownership of currency from previous transaction.

Distributed ledger: incentivize community to maintain.

"Alice pays Bob 3 units." "Alice transfers control of 3 units to Bob."

Input:

- Previous transaction ID.
- Public key used in previous transaction.
- Digital signature using based on previous transaction's public key.

Output:

- Bob's address
- # of units
 - Bitcoin address
 - = hash of public key
- Should include own address to "make change"

Block

Header + a list of transactions

A sequence of blocks = ledger of transactions

Which blockchain?

Blocks form a tree.

- Could have forks in the tree.
- Only the longest chain is considered to be valid by the community.

Adding blocks to the chain

A block can only be added to the blockchain if the hash of the block is small.

- Users try to generate a block with a small hash.
 - ("cryptographic puzzle")

 Updating the blockchain requires work but maintains the public ledger.

 Motivation: whoever constructs the block includes one transaction paying themselves 25 BTC ("mining")

Why people agree on a single ledger

Bitcoin designed so everyone is motivated to agree on a single public ledger

- If I am trying to add a block to the chain and I do so, I'm motivated to grow that chain because that chain has my reward.
- If I am trying to add a block to the chain but someone else beats me, the probability I'll find the next block is the same regardless of whether I use the new block or not.

Cryptographic parts of Bitcoin ledger

Transactions

Blocks

Blockchain

Digital signatures for transaction approval

(Hashed) public keys for addresses

Hash used to collect transactions together Cryptographic hash puzzle required to make block valid (Hashcash SHA-256) Hash used to chain transactions together

Only blocks in longest chain considered valid