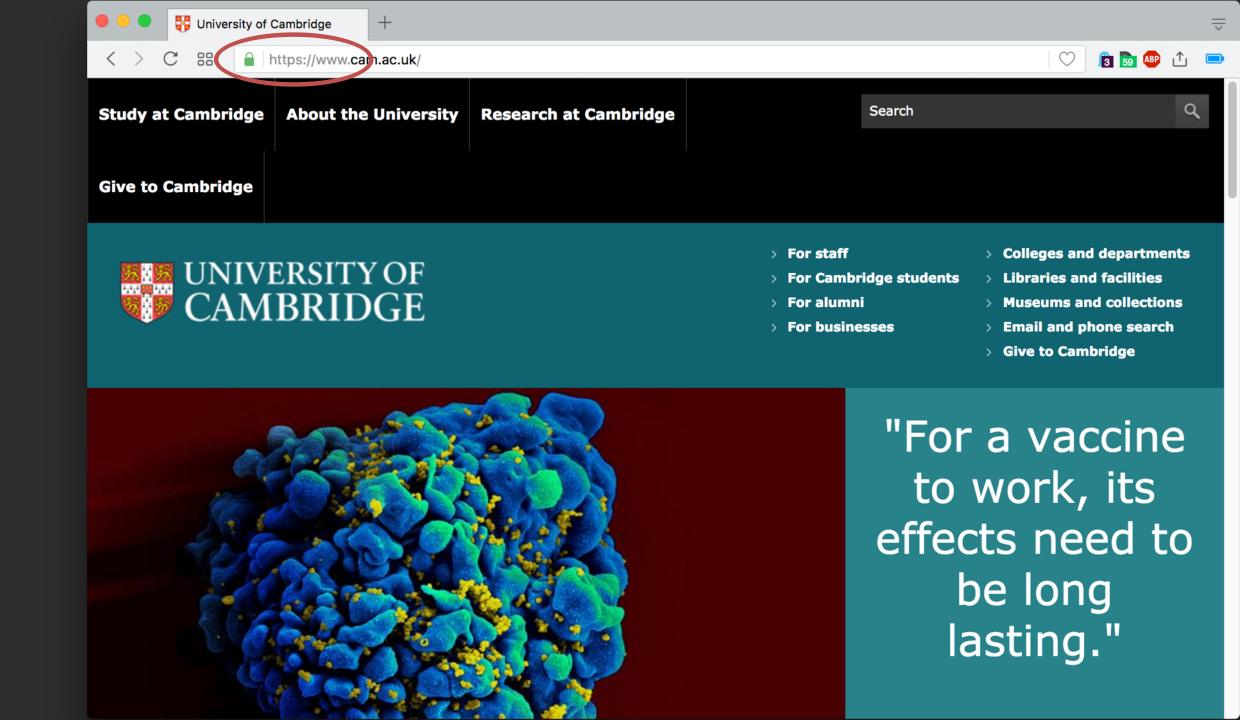
Practical post-quantum key exchange

Funding acknowledgements:

QCrypt 2017 • University of Cambridge • September 18, 2017

Key exchange on the Internet

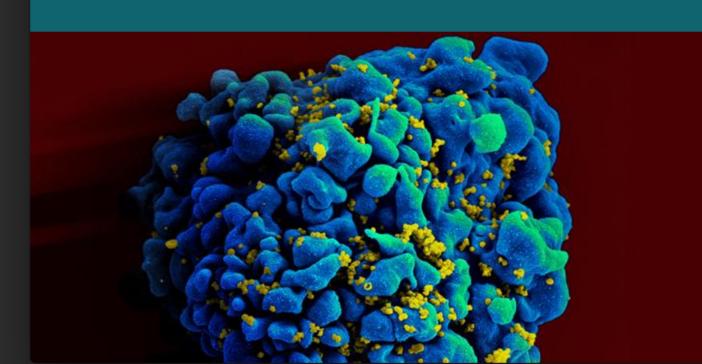
SSL – Secure Sockets Layer protocol TLS – Transport Layer Security protocol HTTPS – HTTP using SSL/TLS

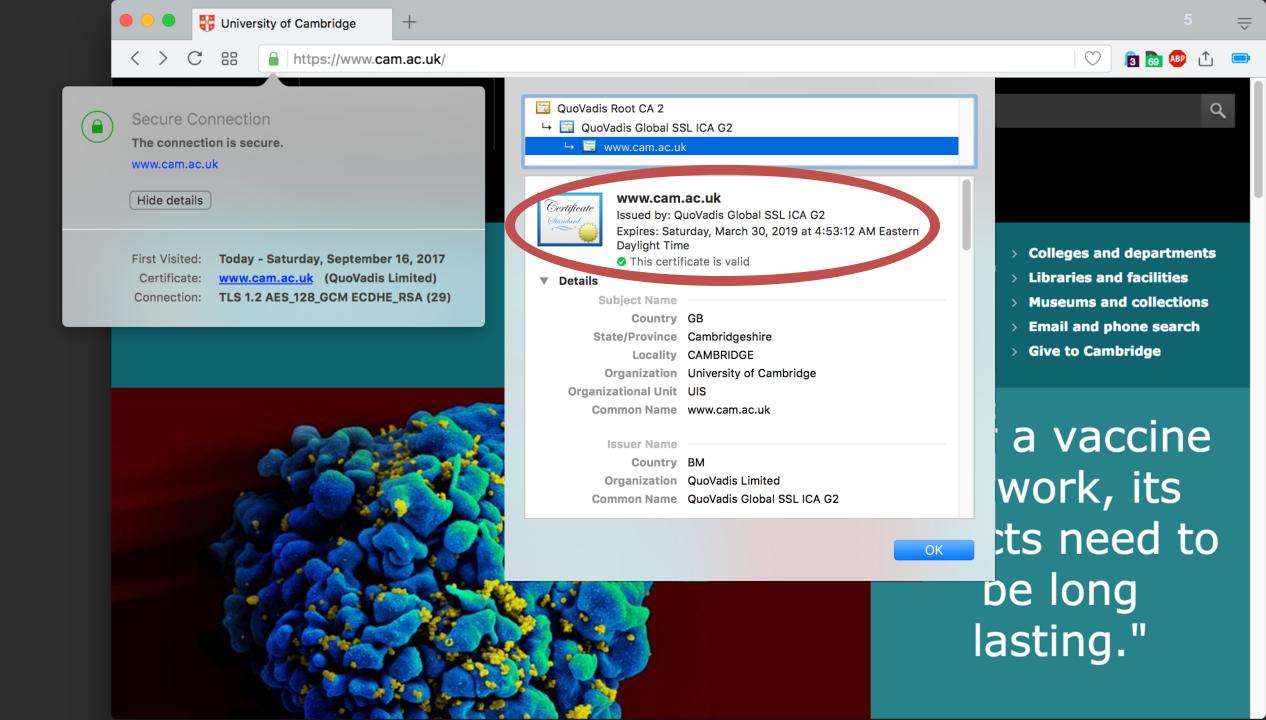


University of Cambridge			4 👳
< > C BB https://www.cam.ac.uk/			💟 🔋 🗟 🚇 🗅 📼
Secure Connection	Research at Cambridge	Search	٩
The connection is secure. www.cam.ac.uk			
Hide details			
First Visited: Today - Saturday, September 16, 2017		> For staff	> Colleges and departments
Certificate: WWW.com.ac.Uk (Quovacis Limited)		> For Cambridge studen	ts \rightarrow Libraries and facilities
Connection TLS 1.2 AES_128_GCM ECDHE_RSA (29)		> For alumni	> Museums and collections
		> For businesses	> Email and phone search

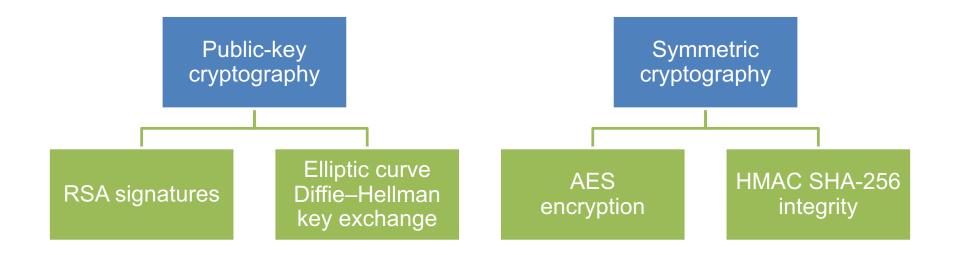
"For a vaccine to work, its effects need to be long lasting."

> Give to Cambridge

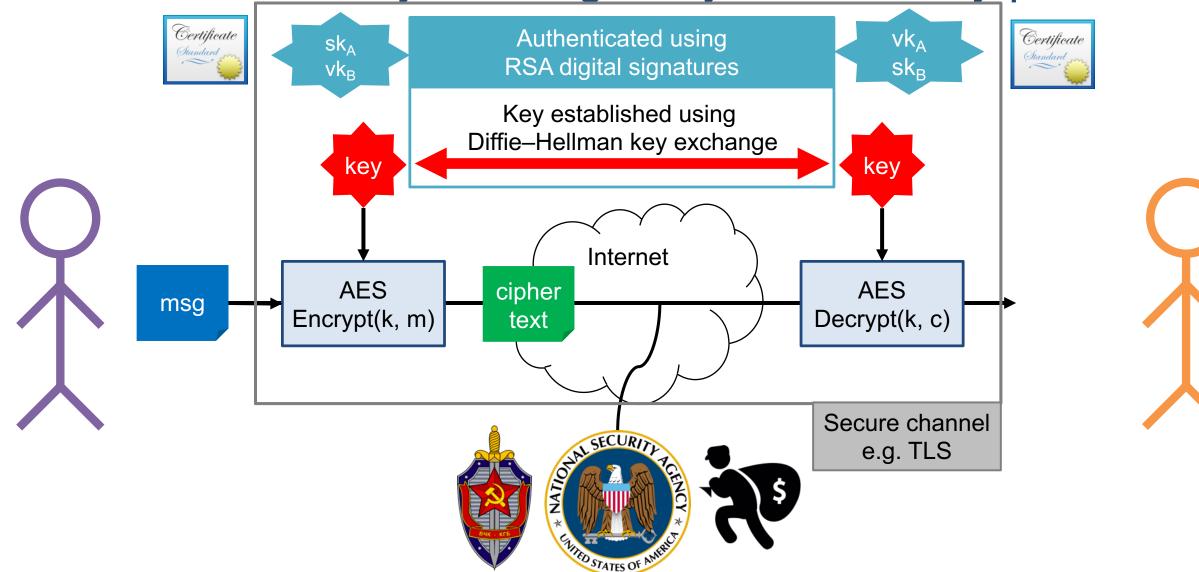




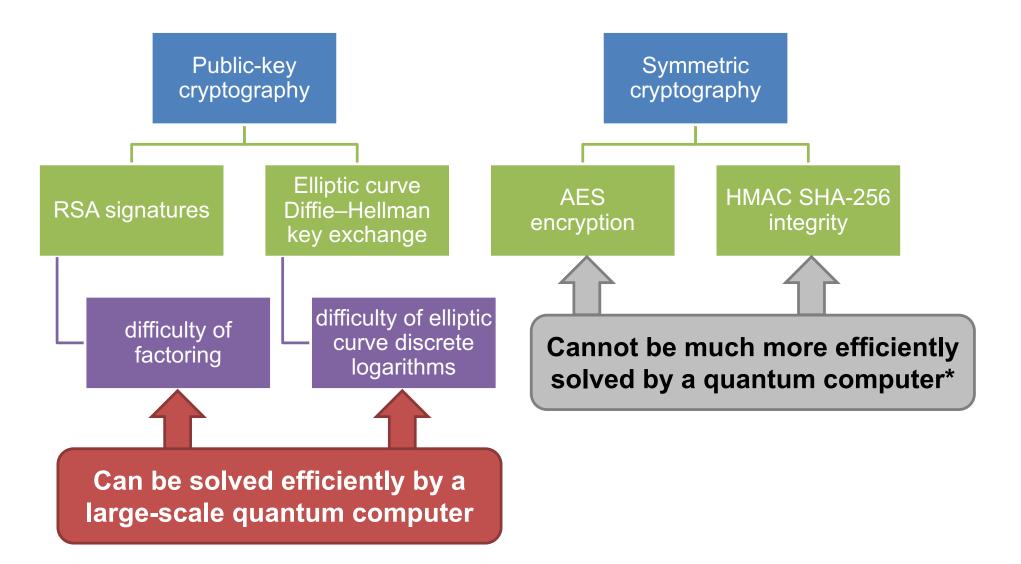
Cryptographic building blocks



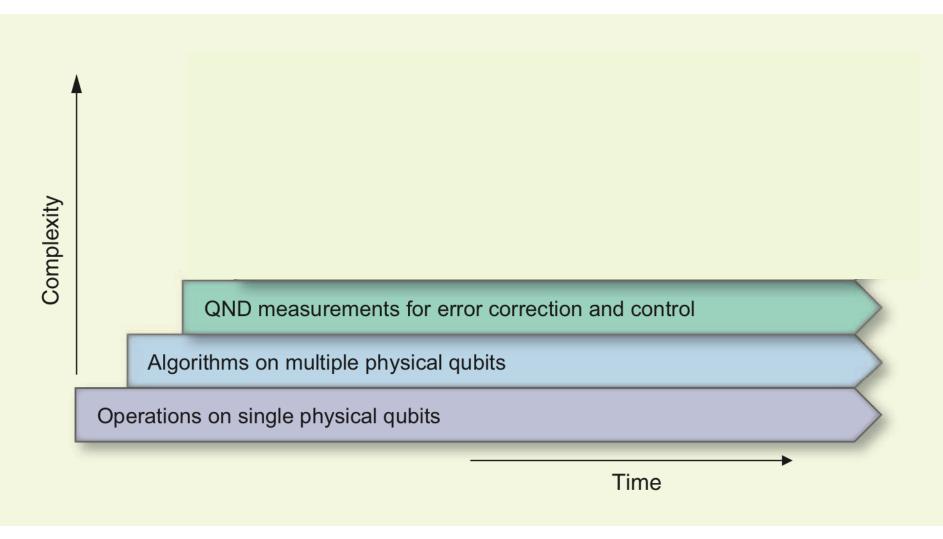
Authenticated key exchange + symmetric encyrption



Cryptographic building blocks

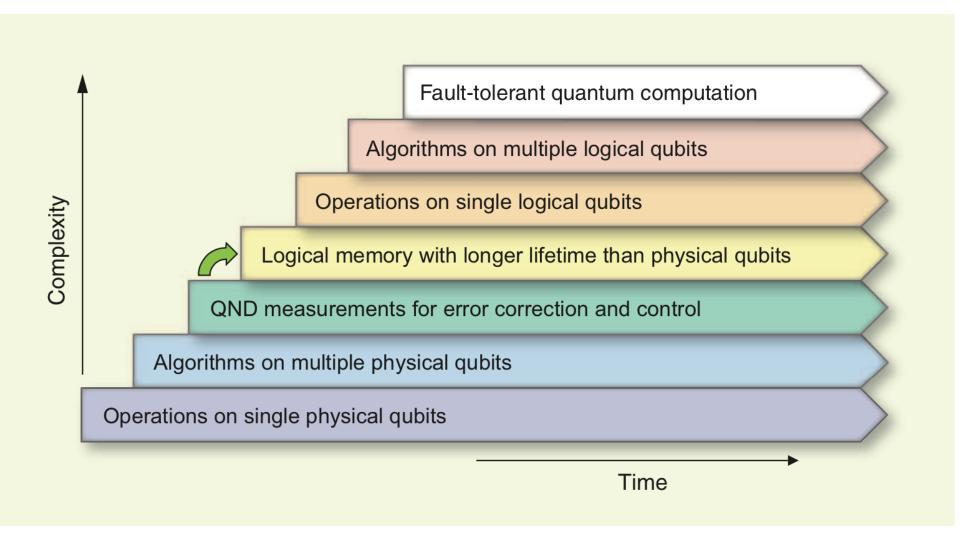


When will a large-scale quantum computer be built?



Devoret, Schoelkopf. Science 339:1169–1174, March 2013.

When will a large-scale quantum computer be built?



Devoret, Schoelkopf. Science 339:1169–1174, March 2013.

When will a large-scale quantum computer be built?

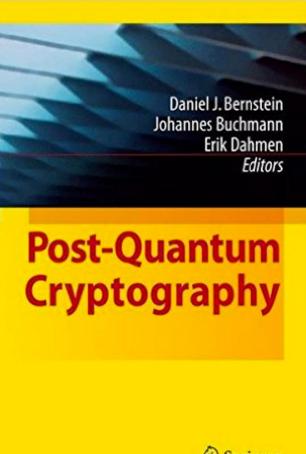
"I estimate a 1/7 chance of breaking RSA-2048 by 2026 and a 1/2 chance by 2031."

> — Michele Mosca, November 2015 https://eprint.iacr.org/2015/1075

Post-quantum cryptography in academia

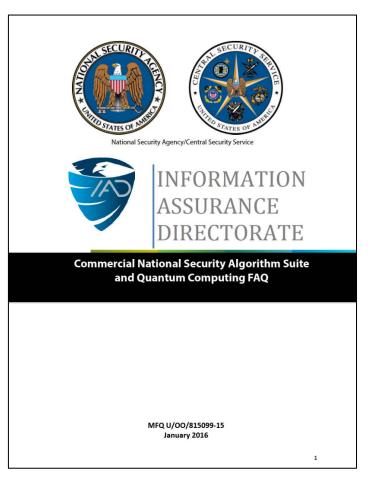
Conference series

- PQCrypto 2006
- PQCrypto 2008
- PQCrypto 2010
- PQCrypto 2011
- PQCrypto 2013
- PQCrypto 2014
- PQCrypto 2016
- PQCrypto 2017
- PQCrypto 2018



Deringer

Post-quantum cryptography in government



"IAD will initiate a transition to quantum resistant algorithms in the not too distant future."

> – NSA Information Assurance Directorate, Aug. 2015

NISTIR 8105

Report on Post-Quantum Cryptography

Lily Chen Stephen Jordan Yi-Kai Liu Dustin Moody Rene Peralta Ray Perlner Daniel Smith-Tone

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.IR.8105

Apr. 2016

Aug. 2015 (Jan. 2016)

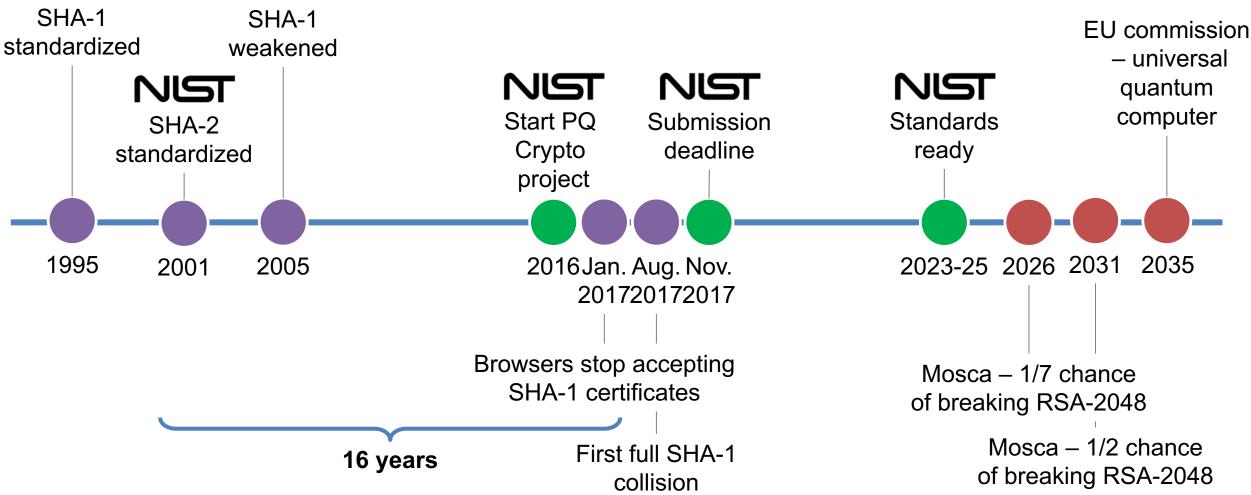
NIST Post-quantum Crypto Project timeline http://www.nist.gov/pqcrypto

December 2016	Formal call for proposals
November 2017	Deadline for submissions
3-5 years	Analysis phase
2 years later (2023-2025)	Draft standards ready

"Our intention is to select a couple of options for more immediate standardization, as well as to eliminate some submissions as unsuitable.

... The goal of the process is **not primarily to pick a winner**, but to document the strengths and weaknesses of the different options, and to analyze the possible tradeoffs among them."

Timeline

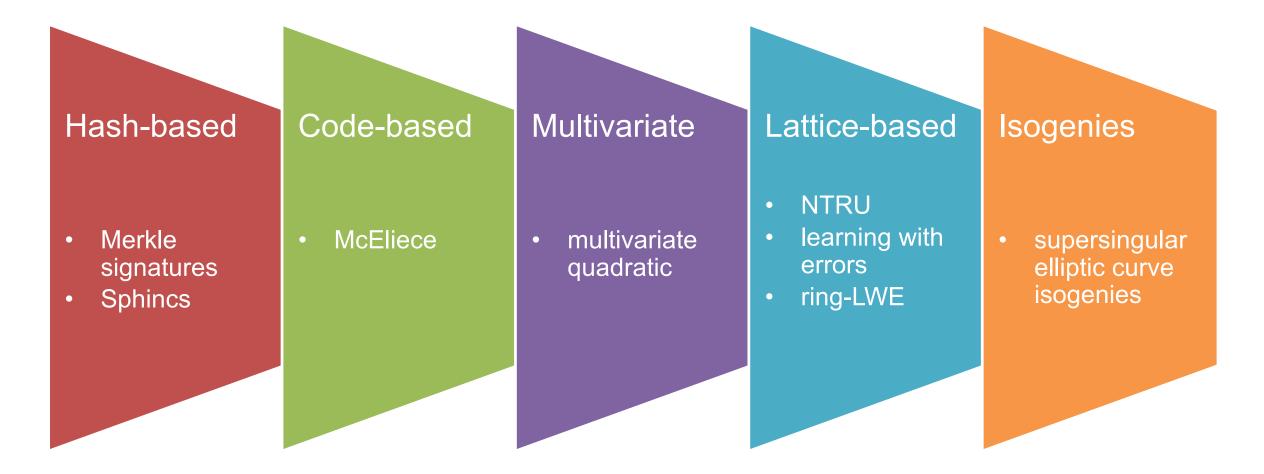


Post-quantum crypto

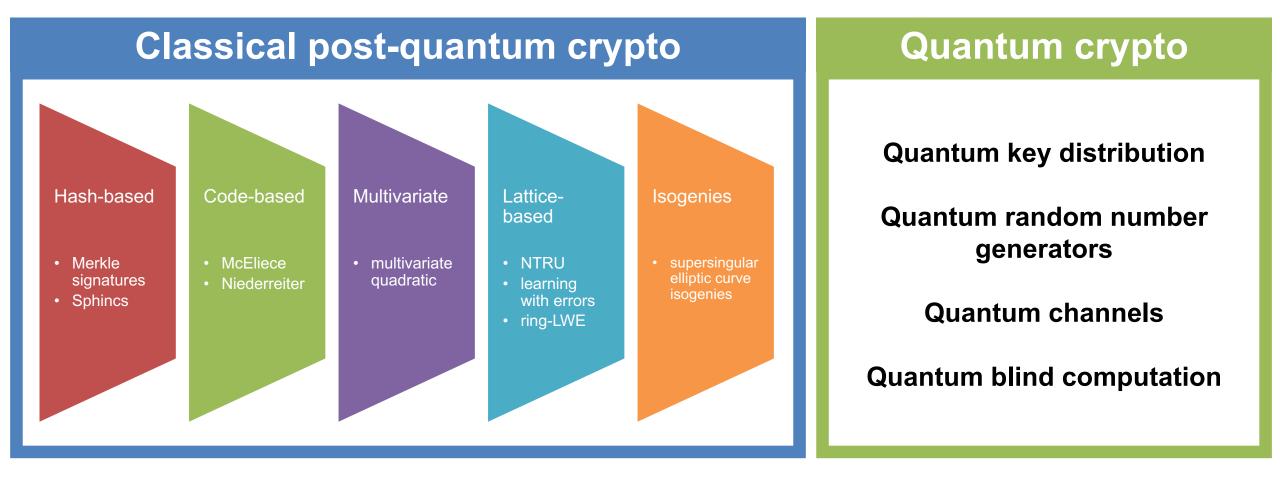
Post-quantum crypto

a.k.a. quantum-resistant algorithms

Classical crypto with no known exponential quantum speedup



Quantum-safe crypto



Post-quantum crypto research agenda

Design better post-quantum schemes

Characterize classical and quantum attacks

Pick parameter sizes

Develop fast, secure implementations

Integrate them into the existing infrastructure

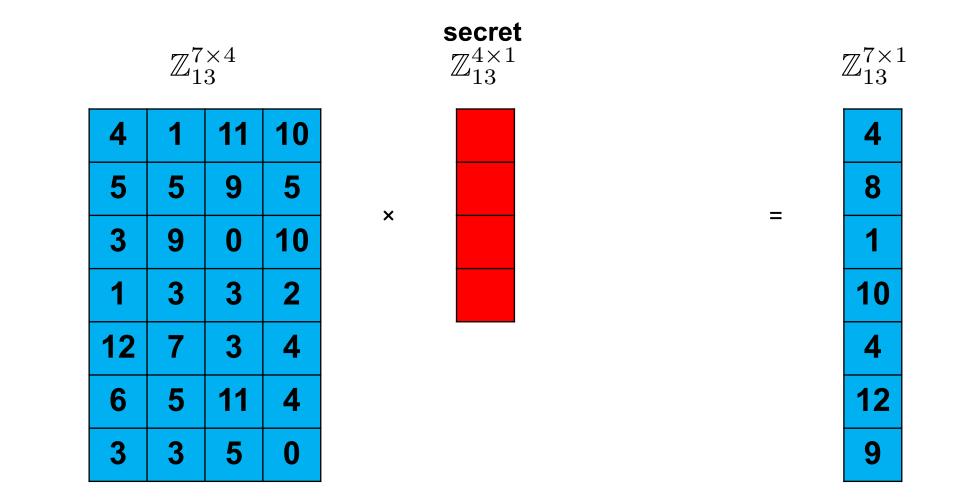
This talk

The Learning with errors problem

- "Lattice-based"
- Public key encryption
- Key exchange
- Transitioning to post-quantum crypto
- Open Quantum Safe project
 - A library for comparing post-quantum primitives
 - Framework for easing integration into applications like OpenSSL

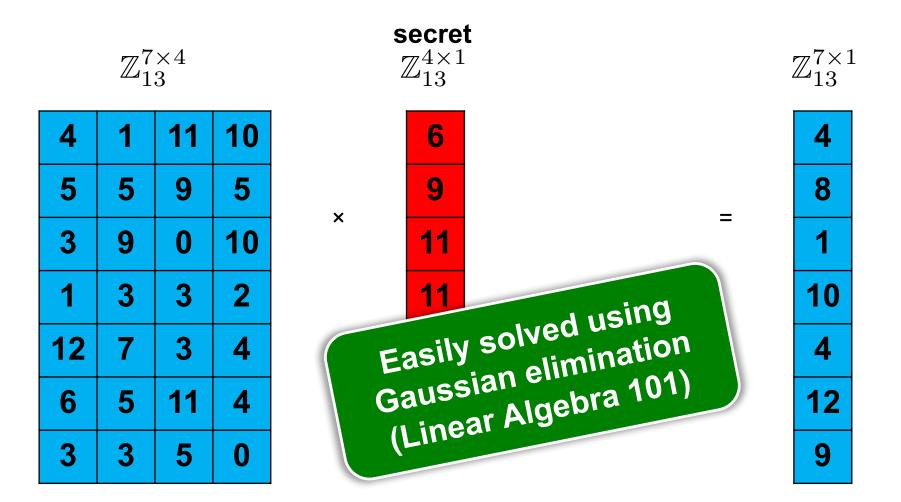
Learning with errors problems

Solving systems of linear equations



Linear system problem: given blue, find red

Solving systems of linear equations



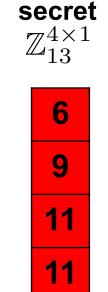
Linear system problem: given blue, find red

+

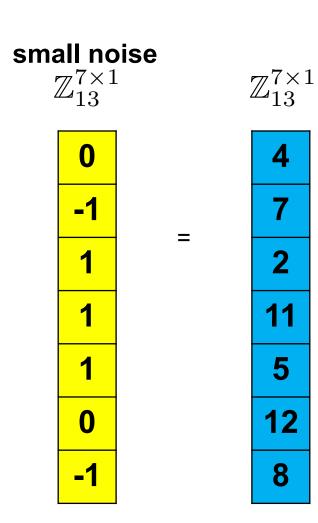
Learning with errors problem

$\mathbb{Z}_{13}^{7 imes 4}$				
4	1	11	10	
5	5	9	5	
3	9	0	10	
1	3	3	2	
12	7	3	4	
6	5	11	4	
3	3	5	0	

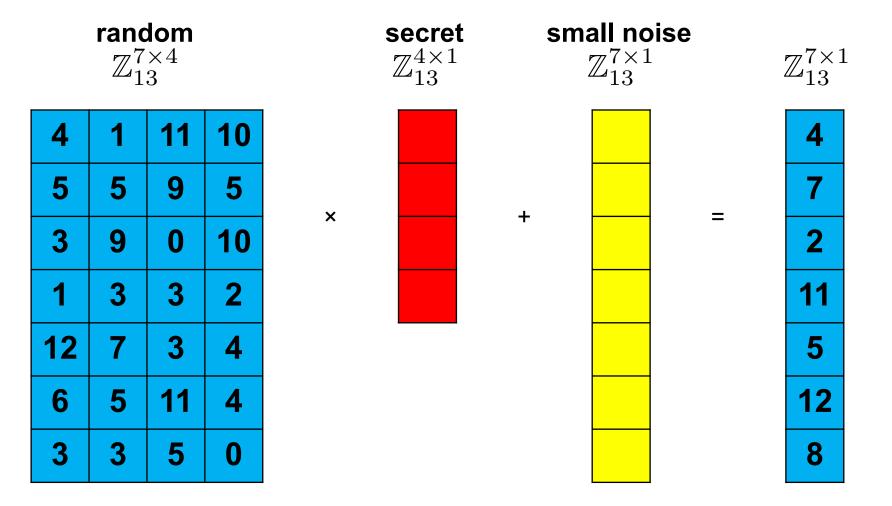
random



Х

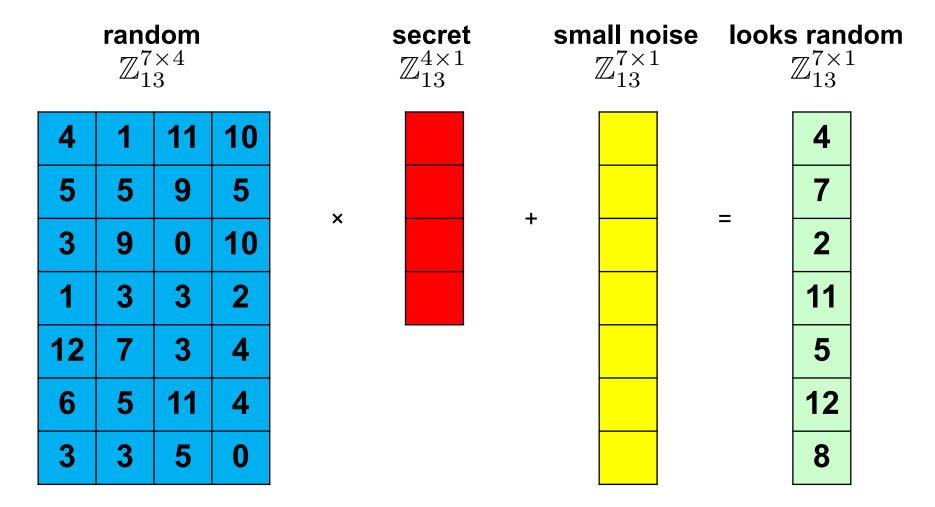


Learning with errors problem



Search LWE problem: given blue, find red

Decision learning with errors problem



Decision LWE problem: given blue, distinguish green from random

Search LWE problem

Let n, m, and q be positive integers.

Let χ_s and χ_e be distributions over \mathbb{Z} . The s

Sample $\mathbf{s} \stackrel{\$}{\leftarrow} \chi_s^n$.

For i = 1, ..., m:

- Sample $\mathbf{a}_i \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^n), e_i \stackrel{\$}{\leftarrow} \chi_e.$
- Set $b_i \leftarrow \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i \mod q$.

The search LWE problem is:

- given $(\mathbf{a}_i, b_i)_{i=1}^m$,
- find s

Decision LWE problem

Let n and q be positive integers.

Let χ_s and χ_e be distributions over \mathbb{Z} .

Sample $\mathbf{s} \stackrel{\$}{\leftarrow} \chi_s^n$.

Define the following two oracles:

•
$$O_{\chi_e,\mathbf{s}}$$
: $\mathbf{a} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^n), e \stackrel{\$}{\leftarrow} \chi_e$;
return $(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e \mod q)$.

•
$$U: \mathbf{a} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^n), u \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q);$$

return $(\mathbf{a}, u).$

The decision LWE problem is: distinguish $O_{\chi,\mathbf{s}}$ from U.

Choice of error distribution

- Usually a discrete Gaussian distribution of width s = lpha q for error rate lpha < 1
- Define the Gaussian function

$$\rho_s(\mathbf{x}) = \exp(-\pi \|\mathbf{x}\|^2 / s^2)$$

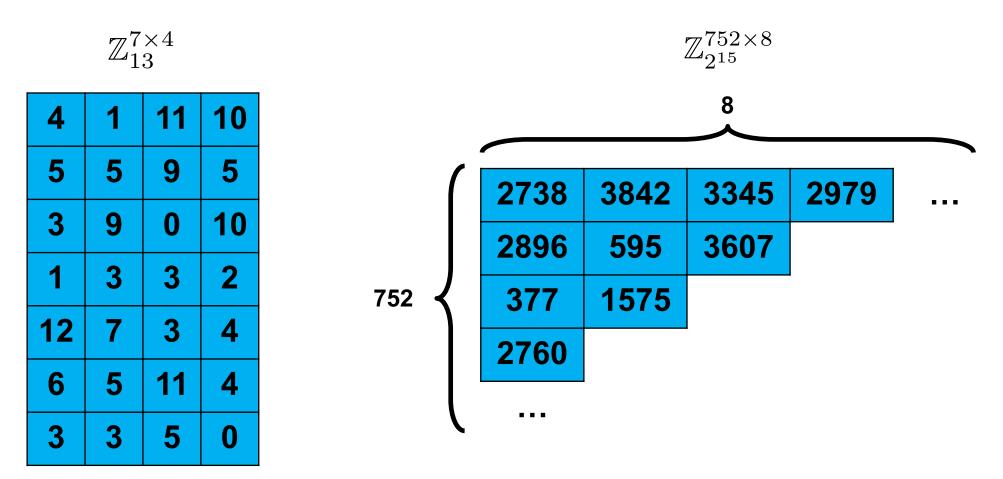
The continuous Gaussian distribution has probability density function

$$f(\mathbf{x}) = \rho_s(\mathbf{x}) / \int_{\mathbb{R}^n} \rho_s(\mathbf{z}) d\mathbf{z} = \rho_s(\mathbf{x}) / s^n$$

Short secrets

- The secret distribution χ_s was originally taken to be the uniform distribution
- Short secrets: use $\chi_s = \chi_e$
- There's a tight reduction showing that LWE with short secrets is hard if LWE with uniform secrets is hard

Toy example versus real-world example



752 × 8 × 15 bits = **11 KiB**

 $\overset{\text{random}}{\mathbb{Z}_{13}^{7\times 4}}$

4	1	11	10
10	4	1	11
11	10	4	1
1	11	10	4
4	1	11	10
10	4	1	11
11	10	4	1

Each row is the cyclic shift of the row above

. . .

 $\overset{\text{random}}{\mathbb{Z}_{13}^{7\times 4}}$

4	1	11	10
3	4	1	11
2	3	4	1
12	2	3	4
9	12	2	3
10	9	12	2
11	10	9	12

Each row is the cyclic shift of the row above

with a special wrapping rule: x wraps to $-x \mod 13$.

. . .

 $\overset{\text{random}}{\mathbb{Z}_{13}^{7\times 4}}$



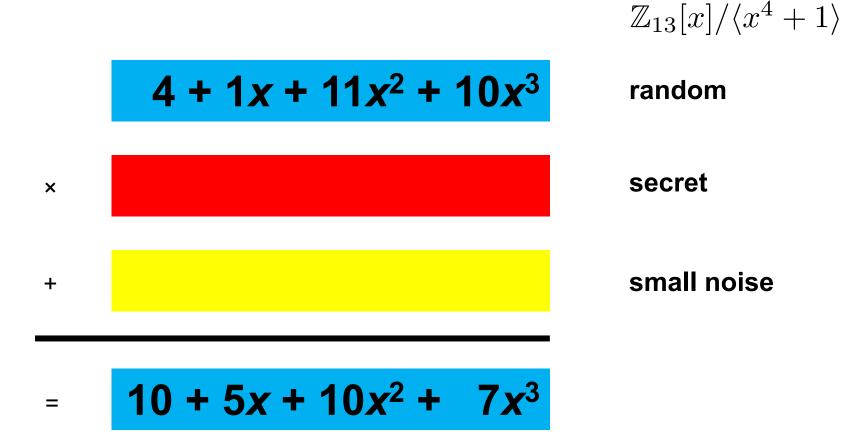
Each row is the cyclic shift of the row above

with a special wrapping rule: x wraps to -x mod 13.

So I only need to tell you the first row.

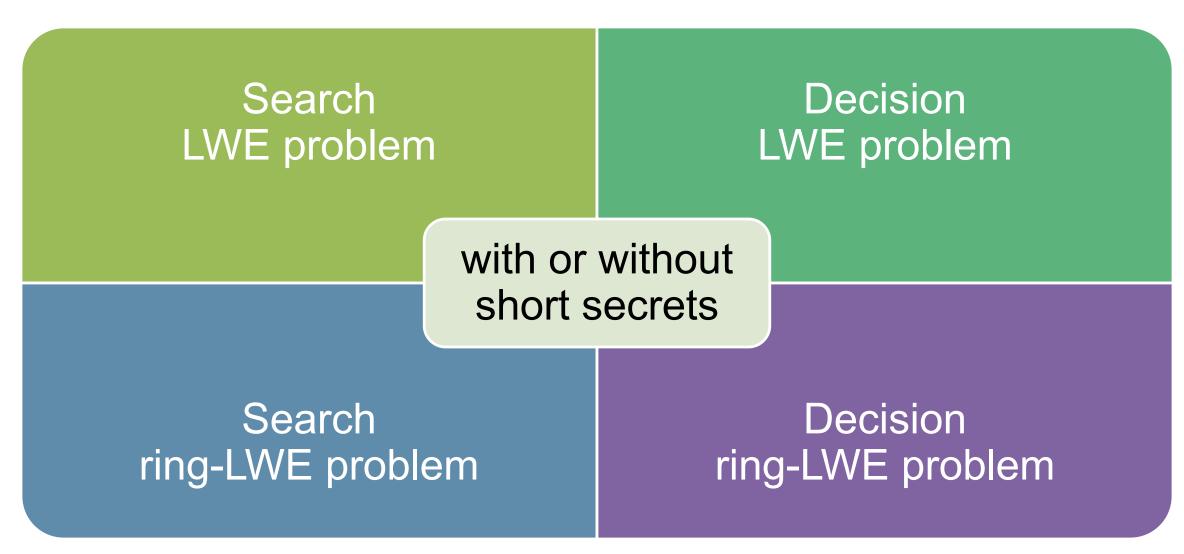
$$\mathbb{Z}_{13}[x]/\langle x^4+1\rangle$$

	$4 + 1x + 11x^2 + 10x^3$	random
×	$6 + 9x + 11x^2 + 11x^3$	secret
+	$0 - 1x + 1x^2 + 1x^3$	small noise
=	$10 + 5x + 10x^2 + 7x^3$	



Search ring-LWE problem: given blue, find red

Problems



Search-decision equivalence

- Easy fact: If the search LWE problem is easy, then the decision LWE problem is easy.
- Fact: If the decision LWE problem is easy, then the search LWE problem is easy.
 - Requires nq calls to decision oracle
 - Intuition: test the each value for the first component of the secret, then move on to the next one, and so on.

NTRU problem

For an invertible $s \in R_q^*$ and a distribution χ on R, define $N_{s,\chi}$ to be the distribution that outputs $e/s \in R_q$ where $e \stackrel{\$}{\leftarrow} \chi$.

The **NTRU learning problem** is: given independent samples $a_i \in R_q$ where every sample is distributed according to either: (1) $N_{s,\chi}$ for some randomly chosen $s \in R_q$ (fixed for all samples), or (2) the uniform distribution, distinguish which is the case.

"Lattice-based"

Hardness of decision LWE – "lattice-based"

worst-case gap shortest vector problem (GapSVP)

poly-time [Regev05, BLPRS13]

decision LWE

Lattices

Let $\mathbf{B} = {\mathbf{b}_1, \mathbf{b}_n} \subseteq \mathbb{Z}_q^{n \times n}$ be a set of linearly independent basis vectors for \mathbb{Z}_q^n . Define the corresponding **lattice**

$$\mathcal{L} = \mathcal{L}(\mathbf{B}) = \left\{ \sum_{i=1}^{n} z_i \mathbf{b}_i : z_i \in \mathbb{Z} \right\}$$

(In other words, a lattice is a set of *integer* linear combinations.)

Define the **minimum distance** of a lattice as

$$\lambda_1(\mathcal{L}) = \min_{\mathbf{v} \in \mathcal{L} \setminus \{\mathbf{0}\}} \|\mathbf{v}\|$$

Shortest vector problem

The shortest vector problem (SVP) is: given a basis **B** for some lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$, find a shortest non-zero vector, i.e., find $\mathbf{v} \in \mathcal{L}$ such that $\|\mathbf{v}\| = \lambda_1(\mathcal{L})$.

The decision approximate shortest vector problem $(\mathsf{GapSVP}_{\gamma})$ is: given a basis **B** for some lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$ where either $\lambda_1(\mathcal{L}) \leq 1$ or $\lambda_1(\mathcal{L}) > \gamma$, determine which is the case.

Regev's iterative reduction

Theorem. [**Reg05**] For any modulus $q \leq 2^{\text{poly}(n)}$ and any discretized Gaussian error distribution χ of parameter $\alpha q \geq 2\sqrt{n}$ where $0 < \alpha < 1$, solving the decision LWE problem for $(n, q, \mathcal{U}, \chi)$ with at most m = poly(n) samples is at least as hard as quantumly solving GapSVP_{γ} and SIVP_{γ} on arbitrary *n*dimensional lattices for some $\gamma = \tilde{O}(n/\alpha)$.

The polynomial-time reduction is extremely non-tight: approximately $O(n^{13})$.

Solving the (approximate) shortest vector problem

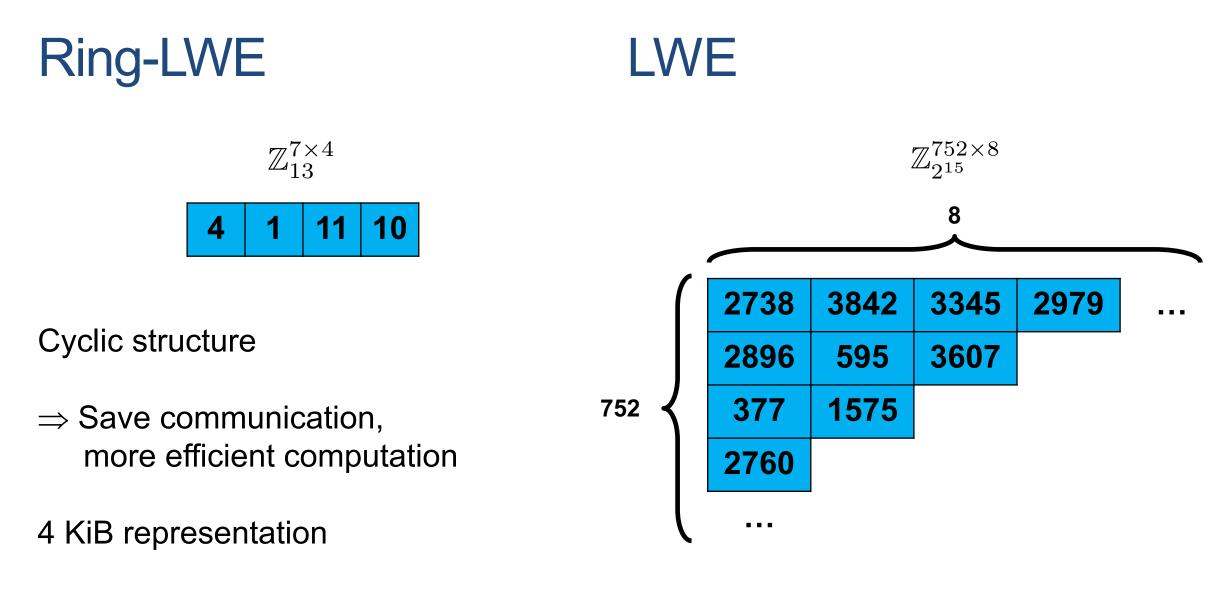
The complexity of GapSVP_{γ} depends heavily on how γ and n relate, and get harder for smaller γ .

Algorithm	Time	Approx. factor γ
LLL algorithm various various Sch87	$\begin{array}{c} \operatorname{poly}(n)\\ 2^{\Omega(n\log n)}\\ 2^{\Omega(n)} \text{ time and space}\\ 2^{\tilde{\Omega}(n/k)} \end{array}$	$\begin{array}{c} 2^{\Omega(n\log\log n/\log n)}\\ \operatorname{poly}(n)\\ \operatorname{poly}(n)\\ 2^k \end{array}$
	$\begin{array}{c} \text{NP} \cap \text{co-NP} \\ \text{NP-hard} \end{array}$	$\frac{\geq \sqrt{n}}{n^{o(1)}}$

In cryptography, we tend to use $\gamma \approx n$.

Picking parameters

- Estimate parameters based on runtime of lattice reduction algorithms.
- Based on reductions:
 - Calculate required runtime for GapSVP or SVP based on tightness gaps and constraints in each reduction
 - Pick parameters based on best known GapSVP or SVP solvers or known lower bounds
- Based on cryptanalysis:
 - Ignore tightness in reductions.
 - Pick parameters based on best known LWE solvers relying on lattice solvers.



752 × 8 × 15 bits = **11 KiB**

Why consider (slower, bigger) LWE?

Generic vs. ideal lattices

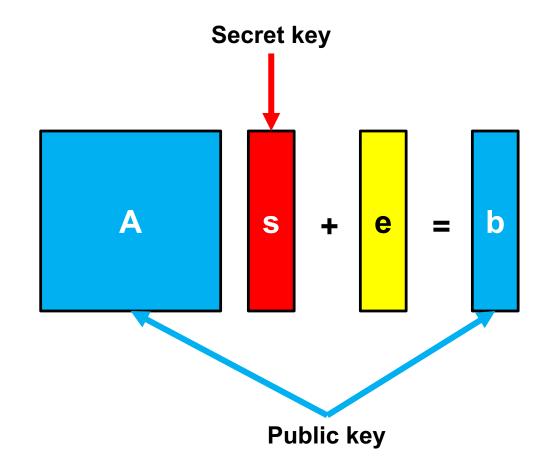
- Ring-LWE matrices have additional structure
 - Relies on hardness of a problem in ideal lattices
- LWE matrices have
 no additional structure
 - Relies on hardness of a problem in generic lattices
- NTRU also relies on a problem in a type of ideal lattices

- Currently, best algorithms for ideal lattice problems are essentially the same as for generic lattices
 - Small constant factor improvement in some cases
 - Recent quantum polynomial time algorithm for Ideal-SVP (<u>http://eprint.iacr.org/2016/885</u>) but not immediately applicable to ring-LWE

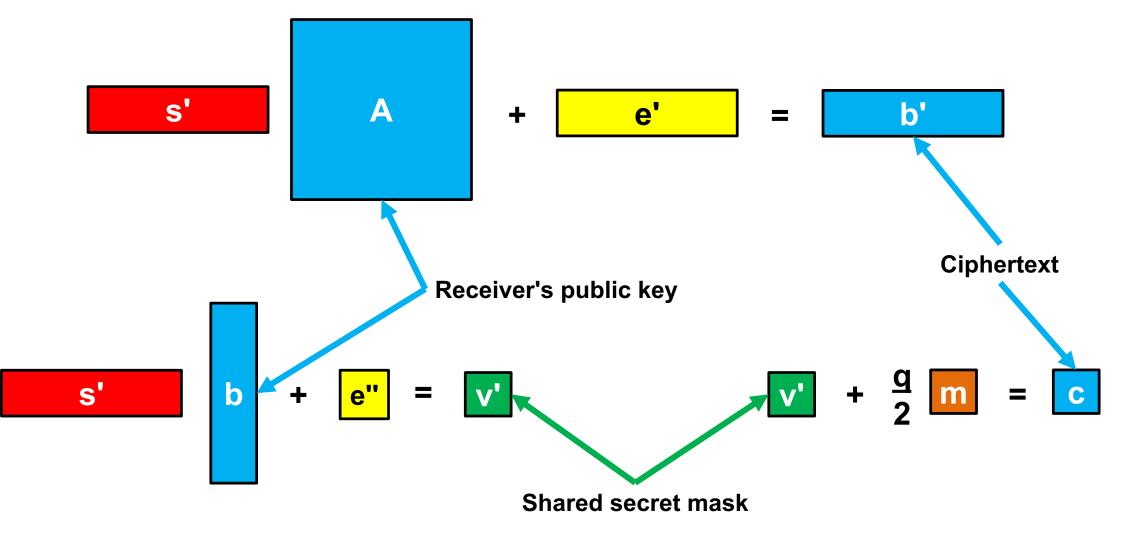
Public key encryption from LWE

Lindner–Peikert, CT-RSA 2011

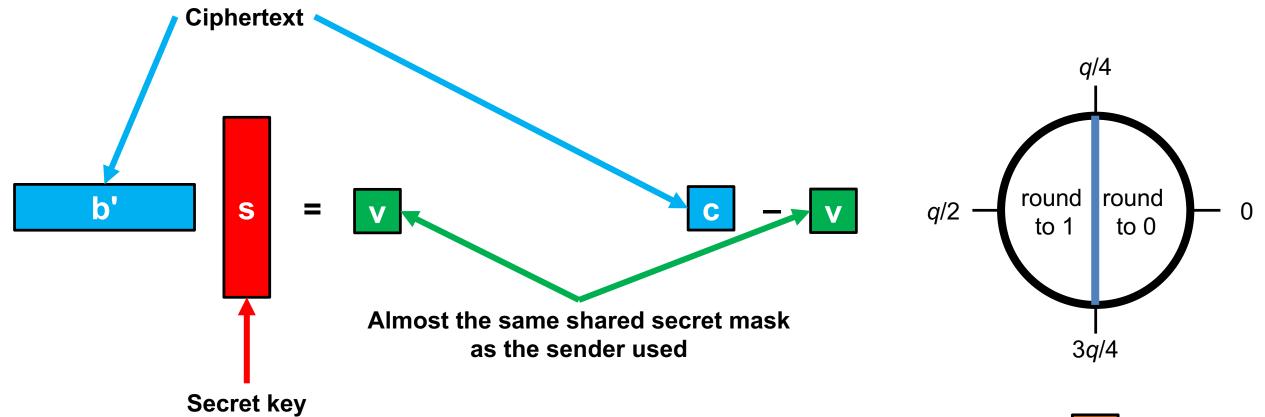
Key generation



Encryption



Decryption



Approximately equal shared secret

The sender uses The receiver uses

s'(As + e) + e'' (s' A + e') s

= s' A s + (s' e + e'') = s' A s + (e' s)

≈ s' A s ≈ s' A s

IND-CPA security of Lindner–Peikert

Indistinguishable against chosen plaintext attacks

Theorem. If the decision LWE problem is hard, then Lindner–Peikert is IND-CPA-secure. Let n, q, χ be LWE parameters. Let \mathcal{A} be an algorithm. Then there exist algorithms $\mathcal{B}_1, \mathcal{B}_2$ such that

$$\mathsf{Adv}^{\mathsf{ind-cpa}}_{\mathbf{LP}[n,q,\chi]}(\mathcal{A}) \leq \mathsf{Adv}^{\mathsf{dlwe}}_{n,q,\chi}(\mathcal{A} \circ \mathcal{B}_1) + \mathsf{Adv}^{\mathsf{dlwe}}_{n,q,\chi}(\mathcal{A} \circ \mathcal{B}_2)$$

Public key validation

- No public key validation possible in IND-CPA KEMs/PKEs from LWE/ring-LWE
- Key reuse in LWE/ring-LWE leads to real attacks following from searchdecision equivalence
 - Comment in [Peikert, PQCrypto 2014]
 - Attack described in [Fluhrer, Eprint 2016]
- Need to ensure usage is okay with just IND-CPA
- Or construct IND-CCA KEM/PKE using Fujisaki–Okamoto transform or quantum-resistant variant [Targhi–Unruh, TCC 2016] [Hofheinz et al., Eprint 2017]

Direct key agreement

LWE and ring-LWE public key encryption and key exchange

Regev STOC 2005

Public key encryption from LWE

Lyubashevsky, Peikert, Regev

Eurocrypt 2010

Public key encryption from ring-LWE

Lindner, Peikert

ePrint 2010, CT-RSA 2011

- Public key encryption from LWE and ring-LWE
- Approximate key exchange from LWE

Ding, Xie, Lin ePrint 2012

Key exchange from LWE and ring-LWE with single-bit reconciliation

Peikert

PQCrypto 2014

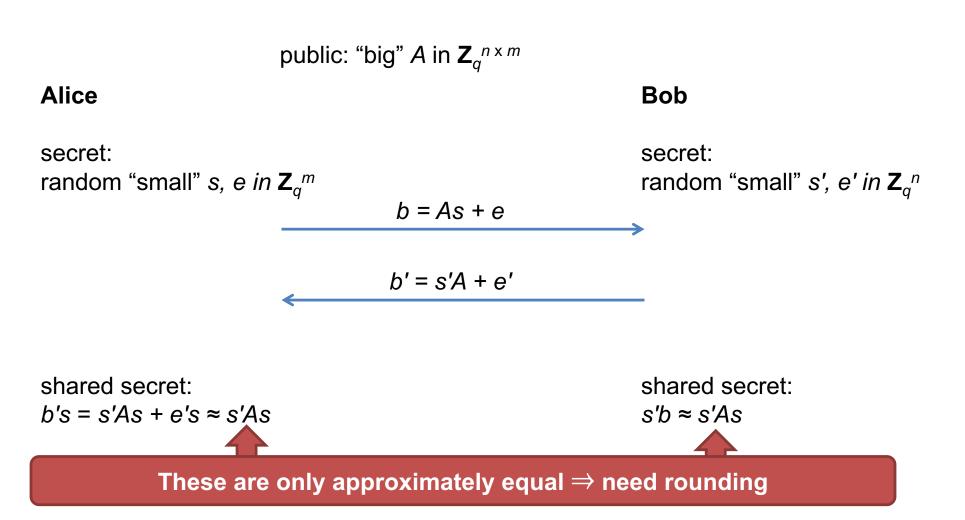
 Key encapsulation mechanism based on ring-LWE and variant single-bit reconciliation

Bos, Costello, Naehrig, Stebila IEEE S&P 2015

 Implementation of ring-LWE key exchange, testing in TLS 1.2

Basic LWE key agreement (unauthenticated)

Based on Lindner–Peikert LWE public key encryption scheme

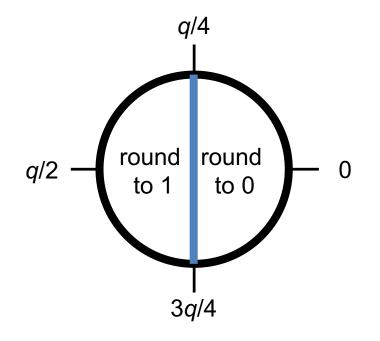


Rounding

- Each coefficient of the polynomial is an integer modulo *q*
- Treat each coefficient independently
- Techniques by Ding [Din12] and Peikert [Pei14]

Basic rounding

- Round either to 0 or q/2
- Treat *q*/2 as 1

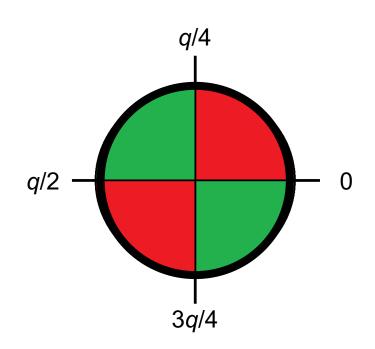


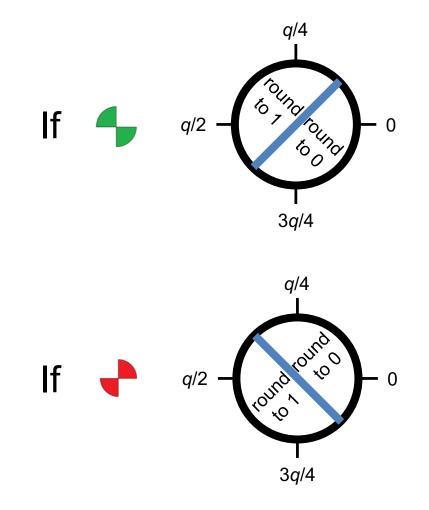
This works most of the time: prob. failure 2⁻¹⁰.

Not good enough: we need exact key agreement.

Rounding (Peikert)

Bob says which of two regions the value is in: 4 or 4

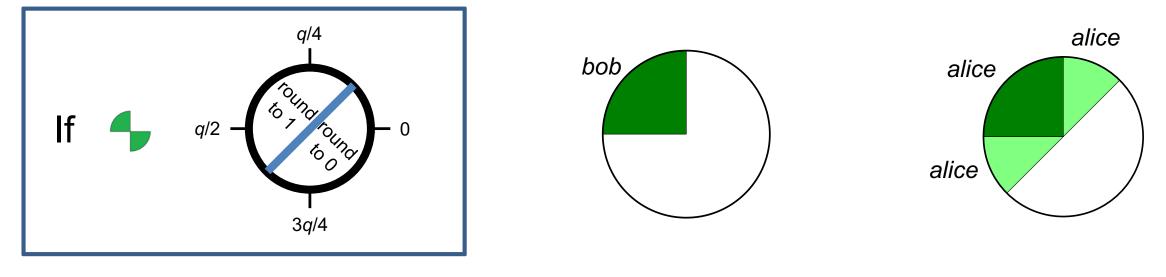




[Peikert; PQCrypto 2014]

Rounding (Peikert)

• If $| alice - bob | \le q/8$, then this always works.



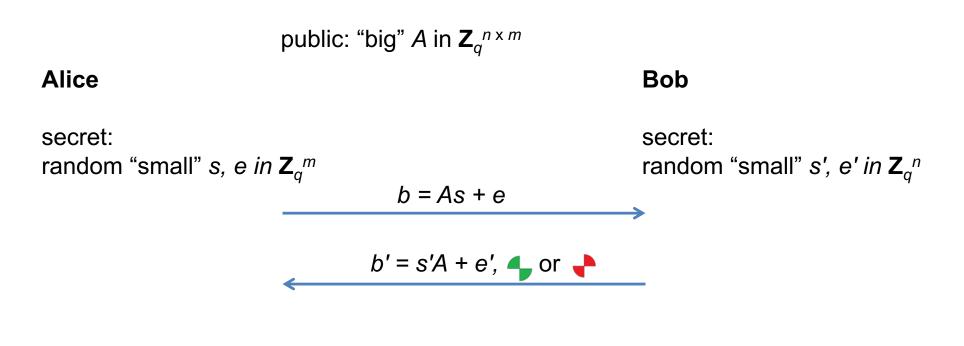
Security not affected: revealing

🦕 or 🔶 leaks i

leaks no information

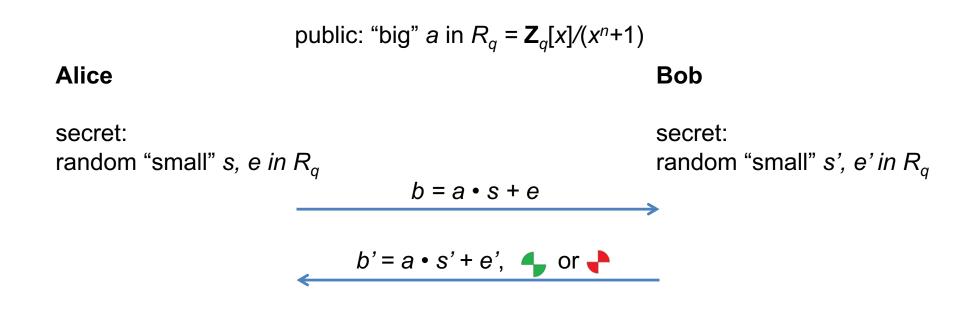
[Peikert; PQCrypto 2014]

Exact LWE key agreement (unauthenticated)



shared secret: round(*b*'s) shared secret: round(*s'b*)

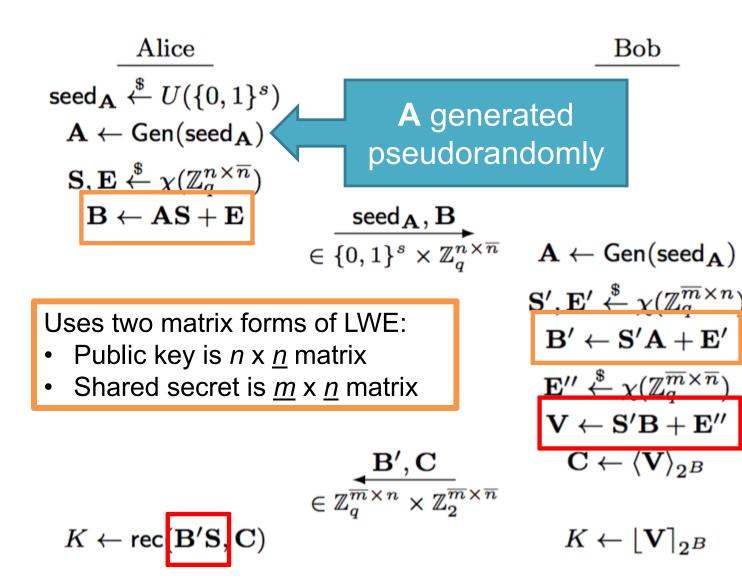
Exact ring-LWE key agreement (unauthenticated)



shared secret:
round(s • b')

shared secret: round(*b* • *s'*)

Exact LWE key agreement -- "Frodo"



Secure if decision learning with errors problem is hard (and Gen is a random oracle).

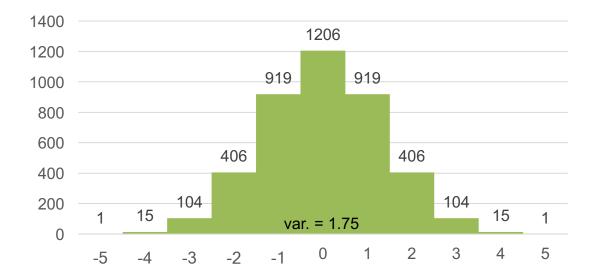
Rounding

We extract 4 bits from each of the 64 matrix entries in the shared secret.

• More granular form of Peikert's rounding.

Parameter sizes, rounding, and error distribution all found via search scripts.

Error distribution



- Close to discrete Gaussian in terms of Rényi divergence (1.000301)
- Only requires 12 bits of randomness to sample

Parameters

All known variants of the sieving algorithm require a list of vectors to be created of this size

<u>"Recommended"</u>

- 144-bit classical security, 130-bit quantum security, 103-bit plausible lower bound
- $n = 752, m = 8, q = 2^{15}$
- χ = approximation to rounded Gaussian with 11 elements
- Failure: 2^{-38.9}
- Total communication: 22.6 KiB

"Paranoid"

 177-bit classical security, 161-bit quantum security, 128-bit plausible lower bound

•
$$n = 864, m = 8, q = 2^{15}$$

- χ = approximation to rounded Gaussian with 13 elements
- Failure: 2^{-33.8}
- Total communication: 25.9 KiB

Exact ring-LWE key agreement – "BCNS15"

BCNS15

Public parameters: $n, q, \chi, a \leftarrow \mathcal{U}(R_q)$ Alice Bob $s, e \leftarrow \mathfrak{s} \chi(R_q)$ $\tilde{b} \leftarrow as + e \in R_q$ $egin{array}{c} s', e' \leftarrow & \chi(R_q) \ ilde{b}' \leftarrow as' + e' \in R_q \end{array}$ $e'' \leftarrow x(R_a)$ $ilde{v} \leftarrow bs' + e'' \in R_q$ $\overline{v} \leftarrow \mathrm{s} \operatorname{dbl}(\tilde{v}) \in R_{2a}$ \tilde{b}',c $c \leftarrow \langle \overline{v}/2 \rangle_2 \in \{0,1\}^n$ $k_A \leftarrow \operatorname{rec}_2(2b's, c) \in \{0, 1\}^n$ $k_B \leftarrow |\overline{v}/2|_2 \in \{0,1\}^n$

[Bos, Costello, Naehrig, Stebila; IEEE S&P 2015]

Parameters

160-bit classical security, 80-bit quantum security

- *n* = 1024
- *q* = 2³²–1
- χ = discrete Gaussian with parameter sigma = 8/sqrt(2 π)
- Failure: 2⁻¹²⁸⁰⁰
- Total communication: 8.1 KiB

"NewHope"

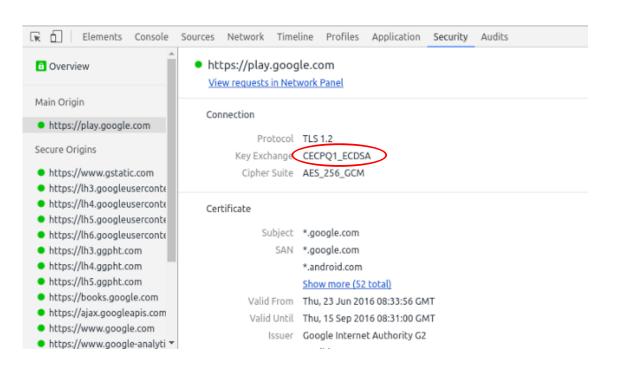
Alkim, Ducas, Pöppelman, Schwabe. USENIX Security 2016

- New parameters
- Different error distribution
- Improved performance
- Pseudorandomly generated parameters
- Further performance improvements by others [GS16,LN16,AOPPS17,...]

Google Security Blog

Experimenting with Post-Quantum Cryptography

July 7, 2016



https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

Evaluation

Our implementations

Ring-LWE BCNS15 LWE Frodo

Pure C implementations Constant time

Compare with others

- RSA 3072-bit (OpenSSL 1.0.1f)
 ECDH nistp256 (OpenSSL)
 Use assembly code
- Ring-LWE NewHope
- NTRU EES743EP1
- SIDH (Isogenies) (MSR) Pure C implementations

Post-quantum key exchange performance

	Speed		Communication	
RSA 3072-bit	Fast	4 ms	Small	0.3 KiB
ECDH nistp256	Very fast	0.7 ms	Very small	0.03 KiB
Code-based	Very fast	0.5 ms	Very large	360 KiB
NTRU	Very fast	0.3–1.2 ms	Medium	1 KiB
Ring-LWE	Very fast	0.2–1.5 ms	Medium	2–4 KiB
LWE	Fast	1.4 ms	Large	11 KiB
Isogenies (SIDH)	Medslow	15–400 ms	Small	0.5 KiB

See [Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila, ACM CCS 2016] for details/methodology

Post-quantum signature sizes

	Public key		Signature		
RSA 3072-bit	Small	0.3 KiB	Small	0.3 KiB	
ECDSA nistp256	Very small	0.03 KiB	Very small	0.03 KiB	
Hash-based (stateful)	Small	0.9 KiB	Medium	3.6 KiB	
Hash-based (stateless)	Small	1 KiB	Large	32 KiB	
Lattice-based (ignoring tightness)	Medium	1.5–8 KiB	Medium	3–9 KiB	
Lattice-based (respecting tightness)	Very large	1330 KiB	Small	1.2 KiB	
Isogenies (SIDH)	Small	1.5 KiB	Very large	141 KiB	

See [Bindel, Herath, McKague, Stebila PQCrypto 2017] for details

Transitioning to PQ crypto

Retroactive decryption

- A passive adversary that records today's communication can decrypt once they get a quantum computer
 - Not a problem for some people
 - Is a problem for other people

 How to provide potential post-quantum security to early adopters?

Hybrid ciphersuites

- Use pre-quantum and post-quantum algorithms together
- Secure if either one remains unbroken

Need to consider backward compatibility for non-hybridaware systems

Why hybrid?

- Potential post-quantum security for early adopters
- Maintain compliance with older standards (e.g. FIPS)
- Reduce risk from uncertainty on PQ assumptions/parameters

Hybrid ciphersuites

	Key exchange	Authentication
1	Hybrid traditional + PQ	Single traditional Likely focus for next 10 years
2	Hybrid traditional + PQ	Hybrid traditional + PQ
3	Single PQ	Single traditional
4	Single PQ	Single PQ

Hybrid key exchange in TLS 1.2

Create a new DH-style ciphersuite with a new key exchange method

- Within the ClientKeyExchange and ServerKeyExchange, convey an ECDH public key and a PQ public key using some internal concatenation format
- Compute two shared secrets, use their concatenation as the premaster secret

Experiments for hybrid key exchange in TLS 1.2

Several papers and prototypes:

- Bos, Costello, Naehrig, Stebila, S&P 2015
- Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila, ACM CCS 2016
- Google Chrome experiment
- liboqs OpenSSL fork
 - <u>https://openquantumsafe.org/</u>

No backwards compatibility issues

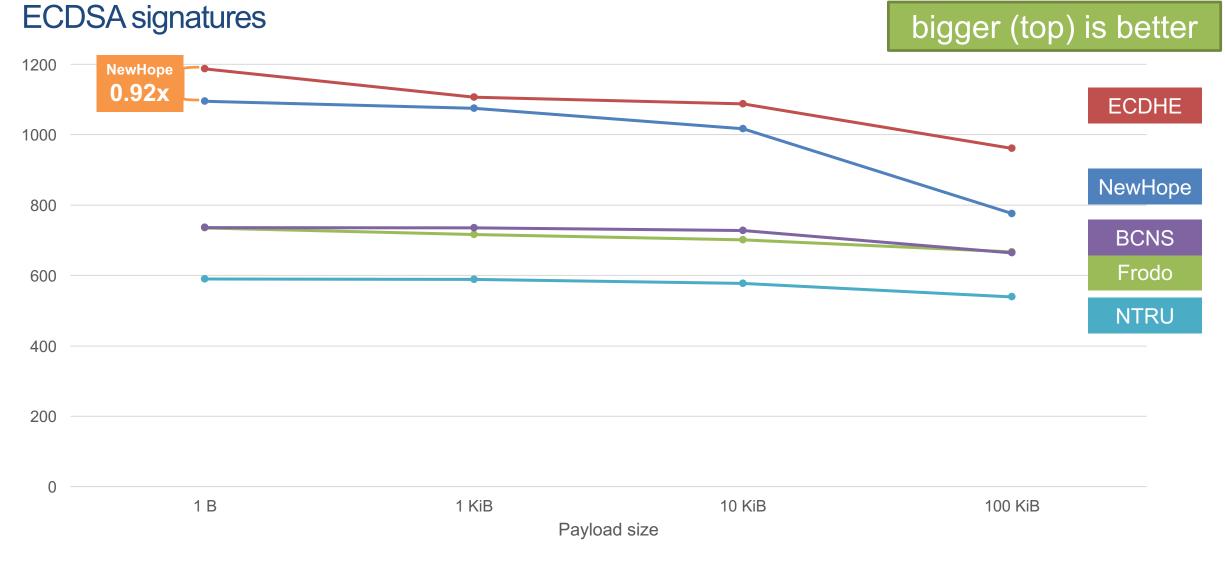
https://www.imperialviolet.org/2016/11/28/cecpq1.html

Google Security Blog

Experimenting with Post-Quantum Cryptography July 7, 2016

🗮 🖬 Elements Console	Sources Network	Timel	ine Profiles	Application	Security	Audits
Overview https://play.google.com View requests in Network Panel						
Main Origin						
https://play.google.com	Connection					
	P	rotocol	TLS 1.2			
Secure Origins	Key Ex	change	CECPQ1_ECDS	А		
https://www.gstatic.com	Ciphe	er Suite	AES_256_GCM			
https://lh3.googleuserconte						
https://lh4.googleuserconte	Certificate					
https://lh5.googleuserconte						
https://lh6.googleuserconte		Subject	*.google.com			
 https://lh3.ggpht.com 		SAN	*.google.com			
 https://lh4.ggpht.com 			*.android.com			
https://lh5.ggpht.com			Show more (52	total)		
https://books.google.com	Val	d From	Thu, 23 Jun 20	16 08:33:56 GN	ΛT	
https://ajax.googleapis.com	Val	id Until	Thu, 15 Sep 20	16 08:31:00 GM	лт	
https://www.google.com		Issuer	Google Interne	t Authority G2		
https://www.google-analyti						

TLS connection throughput – hybrid w/ECDHE



x86_64, 2.6 GHz Intel Xeon E5 (Sandy Bridge) – server Google n1-standard-4, client -32 Note somewhat incomparable security levels

Open Quantum Safe

https://openquantumsafe.org/

Open Quantum Safe

- MIT-licensed open-source project on Github
 - <u>https://openquantumsafe.org/</u>
 - <u>https://github.com/open-quantum-safe/</u>

liboqs: C language library, common API

•Builds on x86 (Linux, Mac, Windows), ARM (Android, Linux)

Open Quantum Safe

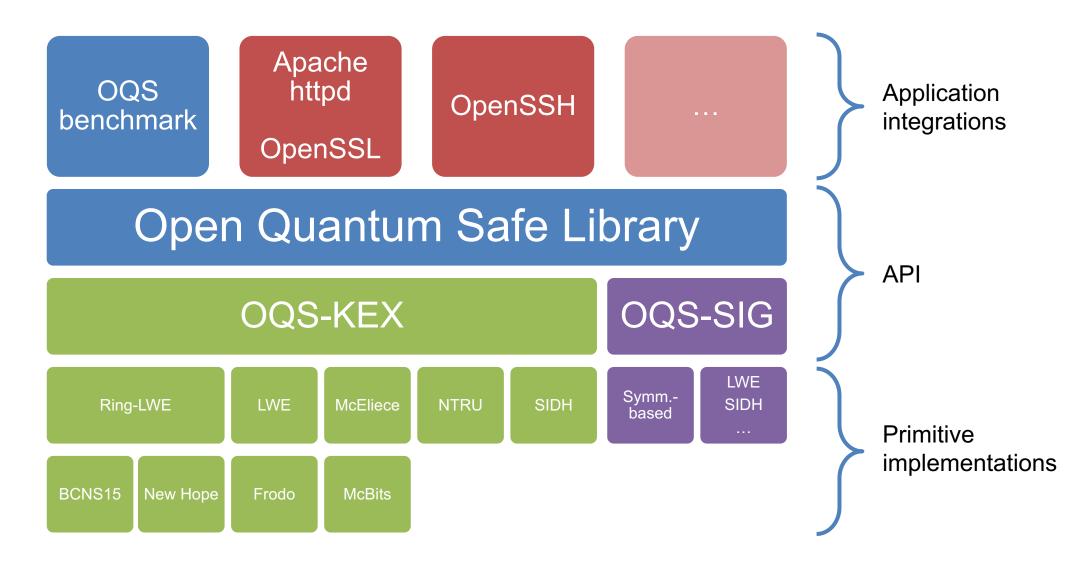
1. Collect post-quantum implementations together

- Our own software
- Thin wrappers around existing open source implementations
- Contributions from others
- 2. Enable direct comparison of implementations
 - See also eBACS/SUPERCOP

3. Support prototype integration into application level protocols

• Don't need to re-do integration for each new primitive – how we did Frodo experiments

Open Quantum Safe architecture



liboqs: Current algorithms

Key exchange

- Ring-LWE:
 - BCNS15
 - NewHope
 - MSR NewHope improvements
- LWE: Frodo
- M-LWE: Kyber
- NTRU
- SIDH (Supersingular isogeny Diffie– Hellman):
 - MSR
 - IQC
- Code: McBits

Digital signatures

Symmetric-based:

Picnic

liboqs: Benchmarking

- Built-in key exchange benchmarking suite
 - •./test_kex --bench
- Gives cycle counts and ms runtimes
- Also have memory usage benchmarks

liboqs: Application integrations

OpenSSL v1.0.2:

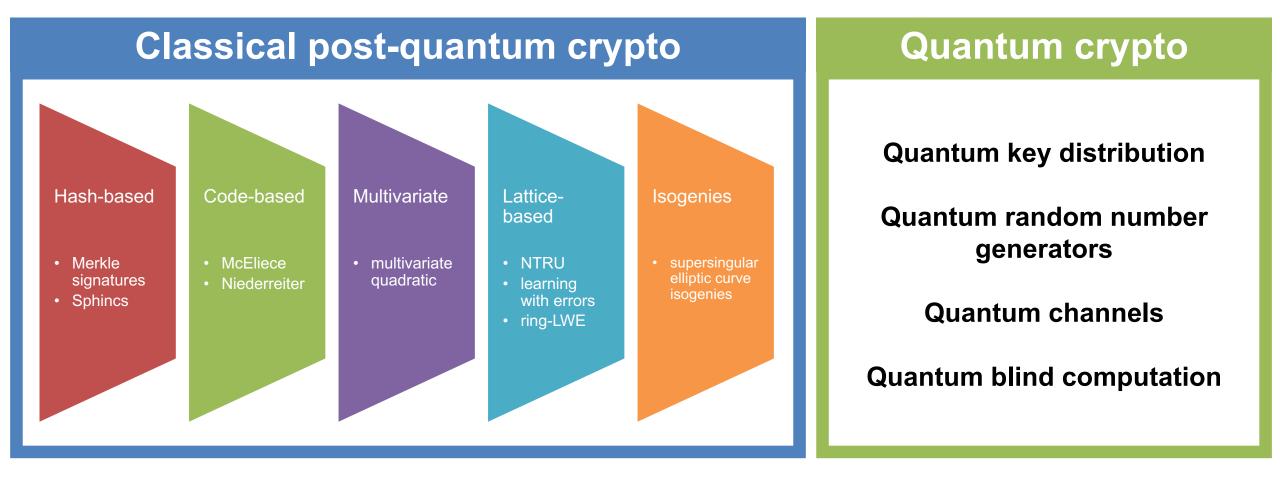
- Ciphersuites using key exchange algorithms from liboqs
- Integrated into openssl speed benchmarking command and s_client and s server command-line programs
- Track OpenSSL 1.0.2 stable with regular updates
 - <u>https://github.com/open-quantum-safe/openssl</u>
- Successfully used in Apache httpd and OpenVPN (with no modifications!)

OpenSSH:

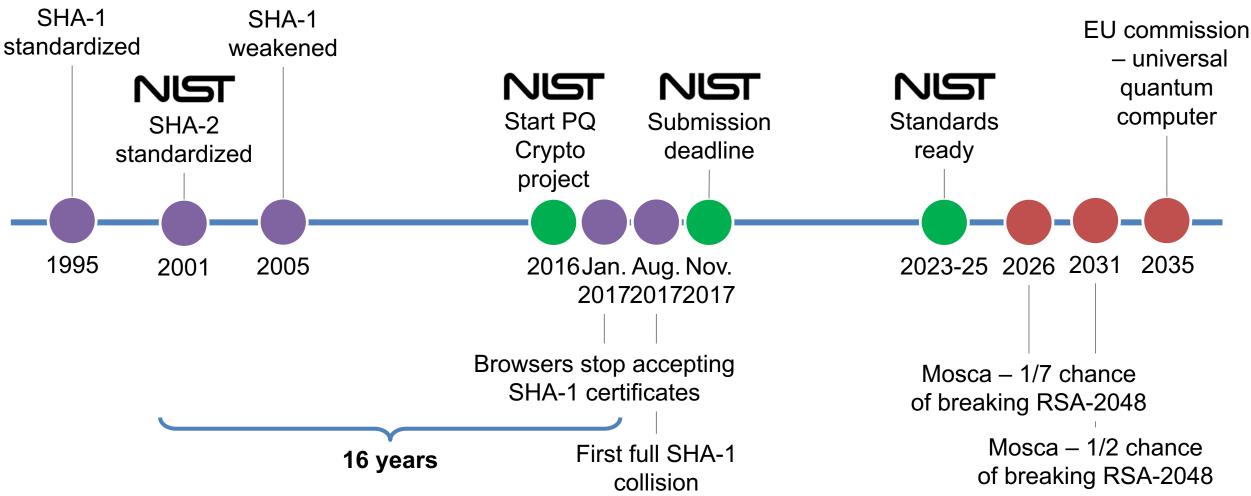
- Using key exchange algorithms from liboqs
- Patch contributed by Microsoft Research
 - https://github.com/Microsoft/PQCrypto-PatchforOpenSSH

Summary

Quantum-safe crypto



Timeline



Practical post-quantum key exchange

Douglas Stebila McMaster

• <u>https://eprint.iacr.org/2016/1017</u>

Open Quantum Safe project

<u>https://openquantumsafe.org/</u>

LWE key exchange (Frodo)

- https://github.com/lwe-frodo
- <u>https://eprint.iacr.org/2016/659</u>

Hybrid PKI

https://eprint.iacr.org/2017/460

https://www.douglas.stebila.ca/research/presentations/

Appendix

Lindner–Peikert public key encryption

Let n, q, χ be LWE parameters.

- KeyGen(): $\mathbf{s} \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}^n)$. $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times n}$. $\mathbf{e} \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}^n)$. $\tilde{\mathbf{b}} \leftarrow \mathbf{As} + \mathbf{e}$. Return $pk \leftarrow (\mathbf{A}, \tilde{\mathbf{b}})$ and $sk \leftarrow \mathbf{s}$.
- Enc($pk, x \in \{0, 1\}$): $\mathbf{s}' \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}^n)$. $\mathbf{e}' \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}^n)$. $\mathbf{\tilde{b}}' \leftarrow \mathbf{s}' \mathbf{A} + \mathbf{e}'$. $e'' \stackrel{\$}{\leftarrow} \chi(\mathbb{Z})$. $\tilde{v}' \leftarrow \langle \mathbf{s}', \mathbf{\tilde{b}} \rangle + e''$. $c \leftarrow \text{encode}(x) + \tilde{v}'$. Return $ctxt \leftarrow (\mathbf{\tilde{b}}', c)$.
- $\operatorname{Dec}(sk, (\tilde{\mathbf{b}}', c)): v \leftarrow \langle \tilde{\mathbf{b}}', \mathbf{s} \rangle$. Return $\operatorname{decode}(c v)$.

93

Encode/decode

$$\operatorname{encode}(x \in \{0, 1\}) \leftarrow x \cdot \left\lfloor \frac{q}{2} \right\rfloor$$
$$\operatorname{decode}(\overline{x} \in \mathbb{Z}_q) \leftarrow \begin{cases} 0, & \text{if } \overline{x} \in \left[-\left\lfloor \frac{q}{4} \right\rfloor, \left\lfloor \frac{q}{4} \right\rfloor\right) \\ 1, & \text{otherwise} \end{cases}$$

Sender and receiver approximately compute the same shared secret $\mathbf{s}' \mathbf{As}$

$$\tilde{v}' = \langle \mathbf{s}', \tilde{\mathbf{b}} \rangle + e'' = \mathbf{s}'(\mathbf{A}\mathbf{s} + \mathbf{e}) + e'' = \mathbf{s}'\mathbf{A}\mathbf{s} + \langle \mathbf{s}', \mathbf{e} \rangle + e'' \approx \mathbf{s}'\mathbf{A}\mathbf{s}$$
$$v = \langle \tilde{\mathbf{b}}', \mathbf{s} \rangle = (\mathbf{s}'\mathbf{A} + \mathbf{e}')\mathbf{s} = \mathbf{s}'\mathbf{A}\mathbf{s} + \langle \mathbf{e}', \mathbf{s} \rangle \approx \mathbf{s}'\mathbf{A}\mathbf{s}$$