Part 2 – LWE-based cryptography

Funding acknowledgements:

SAC Summer School • Université d'Ottawa • August 14, 2017 https://www.douglas.stebila.ca/research/presentations

Post-quantum crypto

Classical crypto with no known exponential quantum speedup

Quantum-safe crypto

Today's agenda

- 1. Quantum computing and its impact on cryptography (Mosca)
- 2. LWE-based cryptography (Stebila)
- 3. Isogeny-based cryptography (Jao)
- 4. Additional topics
 - Security models for post-quantum cryptography (Jao)
 - Applications (Stebila)

Topics excluded:

- Code-based cryptography
- Hash-based signatures
- Multivariate cryptography

Learning with errors problems

Solving systems of linear equations

Linear system problem: given blue, find red

Solving systems of linear equations

Linear system problem: given blue, find red

+

Learning with errors problem

$\mathbb{Z}_{13}^{7 imes 4}$			
4	1	11	10
5	5	9	5
3	9	0	10
1	3	3	2
12	7	3	4
6	5	11	4
3	3	5	0

random

×

secret

5

12

8

Learning with errors problem

Search LWE problem: given blue, find red

Search LWE problem

Let n, m, and q be positive integers. Let χ_s and χ_e be distributions over \mathbb{Z} . Let $\mathbf{s} \stackrel{\$}{\leftarrow} \chi_s^n$. Let $\mathbf{a}_i \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^n)$, $e_i \stackrel{\$}{\leftarrow} \chi_e$, and set $b_i \leftarrow \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i \mod q$, for $i = 1, \ldots, m$.

The search LWE problem for $(n, m, q, \chi_s, \chi_e)$ is to find s given $(\mathbf{a}_i, b_i)_{i=1}^m$. In particular, for algorithm \mathcal{A} , define the advantage

$$\mathsf{Adv}_{n,m,q,\chi_s,\chi_e}^{\mathsf{lwe}}(\mathcal{A}) = \Pr\left[\mathbf{s} \stackrel{\$}{\leftarrow} \chi_s^n; \mathbf{a}_i \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^n); e_i \stackrel{\$}{\leftarrow} \chi_e; \\ b_i \leftarrow \langle \mathbf{a}_i, \mathbf{s}_i \rangle + e \bmod q : \mathcal{A}((\mathbf{a}_i, b_i)_{i=1}^m) = \mathbf{s})\right] .$$

Decision learning with errors problem

Decision LWE problem: given blue, distinguish green from random

Decision LWE problem

Let *n* and *q* be positive integers. Let χ_s and χ_e be distributions over \mathbb{Z} . Let $\mathbf{s} \leftarrow \chi_s^n$. Define the following two oracles:

•
$$O_{\chi_e,\mathbf{s}}: \mathbf{a} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^n), e \stackrel{\$}{\leftarrow} \chi_e; \text{ return } (\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e \mod q).$$

•
$$U: \mathbf{a} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^n), u \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q); \text{ return } (\mathbf{a}, u).$$

The decision LWE problem for (n, q, χ_s, χ_e) is to distinguish $O_{\chi,s}$ from U.

In particular, for algorithm \mathcal{A} , define the advantage

$$\mathsf{Adv}_{n,q,\chi_s,\chi_e}^{\mathsf{dlwe}}(\mathcal{A}) = \left| \Pr(\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n : \mathcal{A}^{O_{\chi_e,\mathbf{s}}}() = 1) - \Pr(\mathcal{A}^U() = 1) \right| .$$

Choice of error distribution

- Usually a discrete Gaussian distribution of width $s = \alpha q$ for error rate $\alpha < 1$
- Define the Gaussian function

$$\rho_s(\mathbf{x}) = \exp(-\pi \|\mathbf{x}\|^2 / s^2)$$

The continuous Gaussian distribution has probability density function

$$f(\mathbf{x}) = \rho_s(\mathbf{x}) / \int_{\mathbb{R}^n} \rho_s(\mathbf{z}) d\mathbf{z} = \rho_s(\mathbf{x}) / s^n$$

Short secrets

- The secret distribution χ_s was originally taken to be the uniform distribution
- Short secrets: use $\chi_s = \chi_e$
- There's a tight reduction showing that LWE with short secrets is hard if LWE with uniform secrets is hard

Toy example versus real-world example

752 × 8 × 15 bits = **11 KiB**

10

 $\begin{array}{c} \text{random} \\ \mathbb{Z}_{13}^{7 \times 4} \\ \hline 1 & 11 \end{array}$

4

Each row is the cyclic shift of the row above

10	4	1	11
11	10	4	1
1	11	10	4
4	1	11	10
10	4	1	11
11	10	4	1

. . .

random $\mathbb{Z}_{13}^{7 \times 4}$

4	1	11	10
3	4	1	11
2	3	4	1
12	2	3	4
9	12	2	3
10	9	12	2
11	10	9	12

Each row is the cyclic shift of the row above

with a special wrapping rule: x wraps to $-x \mod 13$.

. . .

 $random \\ \mathbb{Z}_{13}^{7 \times 4}$

Each row is the cyclic shift of the row above

with a special wrapping rule: x wraps to -x mod 13.

So I only need to tell you the first row.

=

/ X³

Ring learning with errors problem

$$\mathbb{Z}_{13}[x]/\langle x^4+1\rangle$$

	$4 + 1x + 11x^2 + 10x^3$	random
×	$6 + 9x + 11x^2 + 11x^3$	secret
+	$0 - 1x + 1x^2 + 1x^3$	small noise

$$10 + 5x + 10x^2 +$$

Search ring-LWE problem: given blue, find red

Search ring-LWE problem

Let $R = \mathbb{Z}[X]/\langle X^n + 1 \rangle$, where n is a power of 2.

Let q be an integer, and define $R_q = R/qR$, i.e., $R_q = \mathbb{Z}_q[X]/\langle X^n + 1 \rangle$.

Let χ_s and χ_e be distributions over R_q . Let $s \stackrel{\$}{\leftarrow} \chi_s$. Let $a \stackrel{\$}{\leftarrow} \mathcal{U}(R_q), e \stackrel{\$}{\leftarrow} \chi_e$, and set $b \leftarrow as + e$.

The search ring-LWE problem for (n, q, χ_s, χ_e) is to find s given (a, b).

In particular, for algorithm \mathcal{A} define the advantage

$$\mathsf{Adv}_{n,q,\chi_s,\chi_e}^{\mathsf{rlwe}}(\mathcal{A}) = \Pr\left[s \stackrel{\$}{\leftarrow} \chi_s; a \stackrel{\$}{\leftarrow} \mathcal{U}(R_q); e \stackrel{\$}{\leftarrow} \chi_e; b \leftarrow as + e : \mathcal{A}(a,b) = s\right] \;.$$

Decision ring-LWE problem

Let n and q be positive integers. Let χ_s and χ_e be distributions over R_q . Let $s \stackrel{\$}{\leftarrow} \chi_s$. Define the following two oracles:

•
$$O_{\chi_e,s}$$
: $a \stackrel{\$}{\leftarrow} \mathcal{U}(R_q), e \stackrel{\$}{\leftarrow} \chi_e$; return $(a, as + e)$.

•
$$U: a, u \stackrel{\$}{\leftarrow} \mathcal{U}(R_q);$$
 return $(a, u).$

The decision ring-LWE problem for (n, q, χ_s, χ_e) is to distinguish $O_{\chi_e, s}$ from U.

In particular, for algorithm \mathcal{A} , define the advantage

$$\mathsf{Adv}_{n,q,\chi_s,\chi_e}^{\mathsf{drlwe}}(\mathcal{A}) = \left| \Pr(s \stackrel{\$}{\leftarrow} R_q : \mathcal{A}^{O_{\chi_e,s}}() = 1) - \Pr(\mathcal{A}^U() = 1) \right| .$$

Problems

Search-decision equivalence

- Easy fact: If the search LWE problem is easy, then the decision LWE problem is easy.
- Fact: If the decision LWE problem is easy, then the search LWE problem is easy.
 - Requires nq calls to decision oracle
 - Intuition: test the each value for the first component of the secret, then move on to the next one, and so on.

NTRU problem

For an invertible $s \in R_q^*$ and a distribution χ on R, define $N_{s,\chi}$ to be the distribution that outputs $e/s \in R_q$ where $e \stackrel{\$}{\leftarrow} \chi$.

The **NTRU learning problem** is: given independent samples $a_i \in R_q$ where every sample is distributed according to either: (1) $N_{s,\chi}$ for some randomly chosen $s \in R_q$ (fixed for all samples), or (2) the uniform distribution, distinguish which is the case.

"Lattice-based"

Hardness of decision LWE – "lattice-based"

worst-case gap shortest vector problem (GapSVP)

poly-time [Regev05, BLPRS13]

decision LWE

Lattices

Let $\mathbf{B} = {\mathbf{b}_1, \mathbf{b}_n} \subseteq \mathbb{Z}_q^{n \times n}$ be a set of linearly independent basis vectors for \mathbb{Z}_q^n . Define the corresponding **lattice**

$$\mathcal{L} = \mathcal{L}(\mathbf{B}) = \left\{ \sum_{i=1}^{n} z_i \mathbf{b}_i : z_i \in \mathbb{Z} \right\}$$

(In other words, a lattice is a set of *integer* linear combinations.)

Define the **minimum distance** of a lattice as

$$\lambda_1(\mathcal{L}) = \min_{\mathbf{v} \in \mathcal{L} \setminus \{\mathbf{0}\}} \|\mathbf{v}\|$$

Shortest vector problem

The shortest vector problem (SVP) is: given a basis **B** for some lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$, find a shortest non-zero vector, i.e., find $\mathbf{v} \in \mathcal{L}$ such that $\|\mathbf{v}\| = \lambda_1(\mathcal{L})$.

The decision approximate shortest vector problem $(\mathsf{GapSVP}_{\gamma})$ is: given a basis **B** for some lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$ where either $\lambda_1(\mathcal{L}) \leq 1$ or $\lambda_1(\mathcal{L}) > \gamma$, determine which is the case.

Regev's iterative reduction

Theorem. [**Reg05**] For any modulus $q \leq 2^{\text{poly}(n)}$ and any discretized Gaussian error distribution χ of parameter $\alpha q \geq 2\sqrt{n}$ where $0 < \alpha < 1$, solving the decision LWE problem for $(n, q, \mathcal{U}, \chi)$ with at most m = poly(n) samples is at least as hard as quantumly solving GapSVP_{γ} and SIVP_{γ} on arbitrary *n*dimensional lattices for some $\gamma = \tilde{O}(n/\alpha)$.

The polynomial-time reduction is extremely non-tight: approximately $O(n^{13})$.

Solving the (approximate) shortest vector problem

The complexity of GapSVP_{γ} depends heavily on how γ and n relate, and get harder for smaller γ .

Algorithm	Time	Approx. factor γ
LLL algorithm	$\operatorname{poly}(n)$	$2^{\Omega(n\log\log n/\log n)}$
various	$2^{\Omega(n\log n)}$	$\operatorname{poly}(n)$
various	$2^{\Omega(n)}$ time and space	$\operatorname{poly}(n)$
Sch87	$2^{ ilde{\Omega}(n/k)}$	2^k
	$NP \cap co-NP$	$\geq \sqrt{n}$
	NP-hard	$n^{o(1)}$

In cryptography, we tend to use $\gamma \approx n$.

Picking parameters

- Estimate parameters based on runtime of lattice reduction algorithms.
- Based on reductions:
 - Calculate required runtime for GapSVP or SVP based on tightness gaps and constraints in each reduction
 - Pick parameters based on best known GapSVP or SVP solvers or known lower bounds
- Based on cryptanalysis:
 - Ignore tightness in reductions.
 - Pick parameters based on best known LWE solvers relying on lattice solvers.

752 × 8 × 15 bits = **11 KiB**

Why consider (slower, bigger) LWE?

Generic vs. ideal lattices

- Ring-LWE matrices have additional structure
 - Relies on hardness of a problem in ideal lattices
- LWE matrices have
 no additional structure
 - Relies on hardness of a problem in generic lattices
- NTRU also relies on a problem in a type of ideal lattices

- Currently, best algorithms for ideal lattice problems are essentially the same as for generic lattices
 - Small constant factor improvement in some cases
 - Very recent quantum polynomial time algorithm for Ideal-SVP (<u>http://eprint.iacr.org/2016/885</u>) but not immediately applicable to ring-LWE

If we want to eliminate this additional structure, can we still get an efficient protocol?

Public key encryption from LWE

Regev's public key encryption scheme

Let n, m, q, χ be LWE parameters.

- KeyGen(): $\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n$. $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{m \times n}$. $\mathbf{e} \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_q^m)$. $\tilde{\mathbf{b}} \leftarrow \mathbf{A}\mathbf{s} + \mathbf{e}$. Return $pk \leftarrow (\mathbf{A}, \mathbf{b}), sk \leftarrow \mathbf{s}$.
- Enc($pk, x \in \{0, 1\}$): $\mathbf{s}' \stackrel{\$}{\leftarrow} \{0, 1\}^m$. $\mathbf{b}' \leftarrow \mathbf{s}' \mathbf{A}$. $v' \leftarrow \langle \mathbf{s}', \mathbf{b} \rangle$. $c \leftarrow x \cdot \text{encode}(v')$. Return (\mathbf{b}', c) .
- $\operatorname{Dec}(sk, (\mathbf{b}', c)): v \leftarrow \langle \mathbf{b}', \mathbf{s} \rangle$. Return $\operatorname{decode}(v)$.
$$\operatorname{encode}(x \in \{0, 1\}) \leftarrow x \cdot \left\lfloor \frac{q}{2} \right\rfloor$$
$$\operatorname{decode}(\overline{x} \in \mathbb{Z}_q) \leftarrow \begin{cases} 0, & \text{if } \overline{x} \in \left[-\left\lfloor \frac{q}{4} \right\rfloor, \left\lfloor \frac{q}{4} \right\rfloor\right) \\ 1, & \text{otherwise} \end{cases}$$

Lindner–Peikert public key encryption

Let n, q, χ be LWE parameters.

- KeyGen(): $\mathbf{s} \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}^n)$. $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times n}$. $\mathbf{e} \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}^n)$. $\tilde{\mathbf{b}} \leftarrow \mathbf{A}\mathbf{s} + \mathbf{e}$. Return $pk \leftarrow (\mathbf{A}, \tilde{\mathbf{b}})$ and $sk \leftarrow \mathbf{s}$.
- Enc($pk, x \in \{0, 1\}$): $\mathbf{s}' \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}^n)$. $\mathbf{e}' \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}^n)$. $\mathbf{\tilde{b}}' \leftarrow \mathbf{s}' \mathbf{A} + \mathbf{e}'$. $e'' \stackrel{\$}{\leftarrow} \chi(\mathbb{Z})$. $\tilde{v}' \leftarrow \langle \mathbf{s}', \mathbf{\tilde{b}} \rangle + e''$. $c \leftarrow \text{encode}(x) + \tilde{v}'$. Return $ctxt \leftarrow (\mathbf{\tilde{b}}', c)$.
- $\operatorname{Dec}(sk, (\tilde{\mathbf{b}}', c)): v \leftarrow \langle \tilde{\mathbf{b}}', \mathbf{s} \rangle$. Return $\operatorname{decode}(c v)$.

Sender and receiver approximately compute the same shared secret $\mathbf{s}' \mathbf{As}$

$$\tilde{v}' = \langle \mathbf{s}', \tilde{\mathbf{b}} \rangle + e'' = \mathbf{s}'(\mathbf{A}\mathbf{s} + \mathbf{e}) + e'' = \mathbf{s}'\mathbf{A}\mathbf{s} + \langle \mathbf{s}', \mathbf{e} \rangle + e'' \approx \mathbf{s}'\mathbf{A}\mathbf{s}$$
$$v = \langle \tilde{\mathbf{b}}', \mathbf{s} \rangle = (\mathbf{s}'\mathbf{A} + \mathbf{e}')\mathbf{s} = \mathbf{s}'\mathbf{A}\mathbf{s} + \langle \mathbf{e}', \mathbf{s} \rangle \approx \mathbf{s}'\mathbf{A}\mathbf{s}$$

Difference between Regev and Lindner–Peikert

Regev:

- Bob's public key is $\mathbf{s'A}$ where $\mathbf{s'} \stackrel{\$}{\leftarrow} \{0,1\}^m$
- Encryption mask is $\langle \mathbf{s'}, \mathbf{b} \rangle$

Lindner–Peikert:

- Bob's public key is $\mathbf{s'A} + \mathbf{e'}$ where $\mathbf{s'} \stackrel{\$}{\leftarrow} \chi_e$
- Encryption mask is $\langle \mathbf{s}', \mathbf{b} \rangle + e''$

In Regev, Bob's public key is a subset sum instance. In Lindner–Peikert, Bob's public key and encryption mask is just another LWE instance.

IND-CPA security of Lindner–Peikert

Indistinguishable against chosen plaintext attacks

Theorem. If the decision LWE problem is hard, then Lindner–Peikert is IND-CPA-secure. Let n, q, χ be LWE parameters. Let \mathcal{A} be an algorithm. Then there exist algorithms $\mathcal{B}_1, \mathcal{B}_2$ such that

$$\mathsf{Adv}^{\mathsf{ind-cpa}}_{\mathbf{LP}[n,q,\chi]}(\mathcal{A}) \leq \mathsf{Adv}^{\mathsf{dlwe}}_{n,q,\chi}(\mathcal{A} \circ \mathcal{B}_1) + \mathsf{Adv}^{\mathsf{dlwe}}_{n,q,\chi}(\mathcal{A} \circ \mathcal{B}_2)$$

[Lindner, Peikert; CT-RSA 2011]

IND-CPA security of Lindner–Peikert

<u>Game 0</u> : \rightarrow Decision-LWE \rightarrow	Ga	<u>me 1</u> :	\rightarrow Rewrite \rightarrow	Gai	$\underline{\mathrm{me}}\ \underline{2}$:
1: $\mathbf{A} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^{n \times n})$	1:	$\mathbf{A} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^r)$	$\binom{n \times n}{l}$	1:	$\mathbf{A} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^{n imes}$
2: $\mathbf{s}, \mathbf{e} \xleftarrow{\$} \chi(\mathbb{Z}_q^n)$	2:	$\tilde{\mathbf{b}} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z})$	$\binom{n}{2}$	2:	$ ilde{\mathbf{b}} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^n)$
3: $\mathbf{\hat{b}} \leftarrow \mathbf{As} + \mathbf{e}$	9		$(\overline{\pi}n)$	3:	$\mathbf{s}' \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_q^n)$
4: $\mathbf{s}', \mathbf{e}' \leftarrow \chi(\mathbb{Z}_q^n)$ 5: $\tilde{\mathbf{b}}' \leftarrow \mathbf{s}' \mathbf{A} \perp \mathbf{o}'$	3: 4:	$\mathbf{\hat{b}}' \leftarrow \mathbf{s}' \mathbf{A}$	(\mathbb{Z}_q) + $\mathbf{e'}$	4:	$\boxed{[\mathbf{e}' \ e''] \stackrel{\$}{\leftarrow} \chi}$
5: $\mathbf{D} \leftarrow \mathbf{S} \mathbf{A} + \mathbf{e}$ 6: $e'' \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_q)$	5:	$e'' \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_q)$,)	5:	
7: $\tilde{v}' \leftarrow \mathbf{s}' \mathbf{\tilde{b}} + e''$	6:	$\tilde{v}' \leftarrow \mathbf{s}' \hat{\mathbf{b}} +$	- e''		$\begin{bmatrix} \tilde{\mathbf{b}}' \ \tilde{v}' \end{bmatrix} \leftarrow \mathbf{s}'$
8: $c_0 \leftarrow \text{encode}(0) + \tilde{v}'$	7:	$c_0 \leftarrow \text{enco}$	$\mathrm{de}(0) + \tilde{v}'$	6:	$c_0 \leftarrow \text{encode}$
9: $c_1 \leftarrow \text{encode}(1) + \tilde{v}'$	8:	$c_1 \leftarrow \text{enco}$	$\mathrm{de}(1) + \tilde{v}'$	7:	$c_1 \leftarrow \text{encode}$
10: $b^* \xleftarrow{\$} \mathcal{U}(\{0,1\})$	9:	$b^* \stackrel{\$}{\leftarrow} \mathcal{U}(\{0$	$(,1\})$	8:	$b^* \stackrel{\$}{\leftarrow} \mathcal{U}(\{0, 1\})$
11: return	10:	return		9:	return
$(\mathbf{A}, ilde{\mathbf{b}}, ilde{\mathbf{b}}', c_{b^*})$		$(\mathbf{A}, \tilde{\mathbf{b}}, \tilde{\mathbf{b}}', \alpha)$	$c_{b^*})$		$(\mathbf{A}, \tilde{\mathbf{b}}, \tilde{\mathbf{b}}', c_{b^*})$

 $|n\rangle$ (\mathbb{Z}_q^{n+1}) $\mathbf{\tilde{b}} + [\mathbf{e'} \| \mathbf{\tilde{b}}] + \mathbf{e''}$ $\overline{v(0) + \tilde{v}'}$ $e(1) + \tilde{v}'$ 1})

[Lindner, Peikert; CT-RSA 2011]

IND-CPA security of Lindner–Peikert

Game 2: \rightarrow Decision-LWE \rightarrow 1: $\mathbf{A} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_{a}^{n \times n})$ 2: $\tilde{\mathbf{b}} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_{q}^{n})$ 3: $\mathbf{s}' \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_a^n)$ 4: $\left| \left[\mathbf{e}' \| e'' \right] \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_{q}^{n+1}) \right|$ 5: $[\tilde{\mathbf{b}}' \| \tilde{v}'] \leftarrow \mathbf{s}' [\mathbf{A} \| \tilde{\mathbf{b}}] + [\mathbf{e}' \| e'']$ 6: $\overline{c_0} \leftarrow \text{encode}(0) + \tilde{v}'$ 7: $c_1 \leftarrow \text{encode}(1) + \tilde{v}'$ 8: $b^* \stackrel{\$}{\leftarrow} \mathcal{U}(\{0,1\})$ 9: return $(\mathbf{A}, \mathbf{b}, \mathbf{b}', c_{b^*})$

$$\underbrace{\text{Game 3}:} \rightarrow \text{Rewrite} \\
1: \mathbf{A} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^{n \times n}) \\
2: \tilde{\mathbf{b}} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^n) \\
3: \left[\tilde{\mathbf{b}}' \| \tilde{v}' \right] \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^{n+1}) \\
4: c_0 \leftarrow \text{encode}(0) + \tilde{v}' \\
5: c_1 \leftarrow \text{encode}(1) + \tilde{v}' \\
6: b^* \stackrel{\$}{\leftarrow} \mathcal{U}(\{0, 1\}) \\
7: \textbf{return} \\
(\mathbf{A}, \tilde{\mathbf{b}}, \tilde{\mathbf{b}}', c_{b^*})$$

 $\underline{\text{Game } 4}$:

1: $\mathbf{A} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^{n \times n})$ 2: $\tilde{\mathbf{b}} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^n)$ 3: $[\tilde{\mathbf{b}}' \| \tilde{v}'] \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^{n+1})$ 4: $b^* \stackrel{\$}{\leftarrow} \mathcal{U}(\{0,1\})$ 5: return $(\mathbf{A}, \tilde{\mathbf{b}}, \tilde{\mathbf{b}}', \tilde{v}')$

Independent of hidden bit

Public key validation

- No public key validation possible in IND-CPA KEMs/PKEs from LWE/ring-LWE
- Key reuse in LWE/ring-LWE leads to real attacks following from searchdecision equivalence
 - Comment in [Peikert, PQCrypto 2014]
 - Attack described in [Fluhrer, Eprint 2016]
- Need to ensure usage is okay with just IND-CPA
- Or construct IND-CCA KEM/PKE using Fujisaki–Okamoto transform or quantum-resistant variant [Targhi–Unruh, TCC 2016] [Hofheinz et al., Eprint 2017]

Direct key agreement

LWE and ring-LWE public key encryption and key exchange

Regev STOC 2005

Public key encryption from LWE

Lyubashevsky, Peikert, Regev

Eurocrypt 2010

Public key encryption from ring-LWE

Lindner, Peikert

ePrint 2010, CT-RSA 2011

- Public key encryption from LWE and ring-LWE
- Approximate key exchange from LWE

Ding, Xie, Lin ePrint 2012

Key exchange from LWE and ring-LWE with single-bit reconciliation

Peikert

PQCrypto 2014

 Key encapsulation mechanism based on ring-LWE and variant single-bit reconciliation

Bos, Costello, Naehrig, Stebila IEEE S&P 2015

 Implementation of Peikert's ring-LWE key exchange, testing in TLS 1.2

Basic LWE key agreement (unauthenticated)

Based on Lindner–Peikert LWE public key encryption scheme

Rounding

- Each coefficient of the polynomial is an integer modulo *q*
- Treat each coefficient independently
- Techniques by Ding [Din12] and Peikert [Pei14]

Basic rounding

- Round either to 0 or q/2
- Treat *q*/2 as 1

This works most of the time: prob. failure 2⁻¹⁰.

Not good enough: we need exact key agreement.

Rounding (Peikert)

Bob says which of two regions the value is in:

[Peikert; PQCrypto 2014]

Rounding (Peikert)

• If $| alice - bob | \le q/8$, then this always works.

Security not affected: revealing

🦕 or 🔶 leaks r

leaks no information

[Peikert; PQCrypto 2014]

Exact LWE key agreement (unauthenticated)

shared secret:
round(b's)

shared secret:
round(s'b)

Exact ring-LWE key agreement (unauthenticated)

shared secret:
round(s • b')

shared secret:
round(b • s')

Exact LWE key agreement – "Frodo"

Secure if decision learning with errors problem is hard (and Gen is a random oracle).

[Bos et al.; ACM CCS 2016]

Rounding

- We extract 4 bits from each of the 64 matrix entries in the shared secret.
 - More granular form of Peikert's rounding.

Parameter sizes, rounding, and error distribution all found via search scripts.

Error distribution

- Close to discrete Gaussian in terms of Rényi divergence (1.000301)
- Only requires 12 bits of randomness to sample

Parameters

All known variants of the sieving algorithm require a list of vectors to be created of this size

<u>"Recommended"</u>

- 144-bit classical security, 130-bit quantum security, 103-bit plausible lower bound
- $n = 752, m = 8, q = 2^{15}$
- χ = approximation to rounded Gaussian with 11 elements
- Failure: 2^{-38.9}
- Total communication: 22.6 KiB

"Paranoid"

 177-bit classical security, 161-bit quantum security, 128-bit plausible lower bound

•
$$n = 864, m = 8, q = 2^{15}$$

- χ = approximation to rounded Gaussian with 13 elements
- Failure: 2^{-33.8}
- Total communication: 25.9 KiB

Exact ring-LWE key agreement – "BCNS15"

BCNS15

Public parameters: $n, q, \chi, a \leftarrow \mathcal{U}(R_q)$ Alice Bob $s, e \leftarrow \mathfrak{s} \chi(R_q)$ $\tilde{b} \leftarrow as + e \in R_q$ $egin{array}{c} s', e' \leftarrow & \chi(R_q) \ ilde{b}' \leftarrow as' + e' \in R_q \end{array}$ $e'' \leftarrow x(R_a)$ $ilde{v} \leftarrow bs' + e'' \in R_a$ $\overline{v} \leftarrow \mathrm{s} \operatorname{dbl}(\tilde{v}) \in R_{2a}$ \tilde{b}',c $c \leftarrow \langle \overline{v}/2 \rangle_2 \in \{0,1\}^n$ $k_A \leftarrow \operatorname{rec}_2(2b's, c) \in \{0, 1\}^n$ $k_B \leftarrow |\overline{v}/2|_2 \in \{0,1\}^n$

[Bos, Costello, Naehrig, Stebila; IEEE S&P 2015]

Parameters

160-bit classical security, 80-bit quantum security

- *n* = 1024
- *q* = 2³²–1
- χ = discrete Gaussian with parameter sigma = 8/sqrt(2 π)
- Failure: 2⁻¹²⁸⁰⁰
- Total communication: 8.1 KiB

Implementation aspect 1: Polynomial arithmetic

• Polynomial multiplication in $R_q = \mathbf{Z}_q[x]/(x^{1024}+1)$ done with Nussbaumer's FFT:

If $2^m = rk$, then

$$\frac{R[X]}{\langle X^{2^m} + 1 \rangle} \cong \frac{\left(\frac{R[Z]}{\langle Z^r + 1 \rangle}\right)[X]}{\langle X^k - Z \rangle}$$

- Rather than working modulo degree-1024 polynomial with coefficients in Z_q, work modulo:
 - degree-256 polynomial whose coefficients are themselves polynomials modulo a degree-4 polynomial,
 - or degree-32 polynomials whose coefficients are polynomials modulo degree-8 polynomials whose coefficients are polynomials
 - or ...

Implementation aspect 2: Sampling discrete Gaussians

$$D_{\mathbb{Z},\sigma}(x) = \frac{1}{S}e^{-\frac{x^2}{2\sigma^2}} \quad \text{for } x \in \mathbb{Z}, \sigma \approx 3.2, S = 8$$

- Security proofs require "small" elements sampled within statistical distance 2⁻¹²⁸ of the true discrete Gaussian
- We use inversion sampling: precompute table of cumulative probabilities
 - For us: 52 elements, size = 10000 bits
- Sampling each coefficient requires six 192-bit integer comparisons and there are 1024 coefficients
 - 51 1024 for constant time

-

Sampling is expensive

Operation	\mathbf{Cycles}			
Operation	constant-time	non-constant-time		
sample $\stackrel{\hspace{0.1em}\scriptscriptstyle\$}{\leftarrow} \chi$	1042700	668000		
FFT multiplication	342800			
FFT addition	1660			
$dbl(\cdot)$ and crossrounding $\langle \cdot \rangle_{2q,2}$	23500	21300		
rounding $\lfloor \cdot \rfloor_{2q,2}$	5500	3,700		
reconciliation $\operatorname{rec}(\cdot, \cdot)$	14400	6800		

"NewHope"

Alkim, Ducas, Pöppelman, Schwabe. USENIX Security 2016

- New parameters
- Different error distribution
- Improved performance
- Pseudorandomly generated parameters
- Further performance improvements by others [GS16,LN16,AOPPS17,...]

Google Security Blog

Experimenting with Post-Quantum Cryptography

July 7, 2016

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

Implementations

Our implementations

Ring-LWE BCNS15 LWE Frodo

Pure C implementations Constant time

Compare with others

- RSA 3072-bit (OpenSSL 1.0.1f)
 ECDH nistp256 (OpenSSL)
 Use assembly code
- Ring-LWE NewHope
- NTRU EES743EP1
- SIDH (Isogenies) (MSR) Pure C implementations

Post-quantum key exchange performance

	Spee	d	Communication		
RSA 3072-bit	Fast	4 ms	Small	0.3 KiB	
ECDH nistp256	Very fast	0.7 ms	Very small	0.03 KiB	
Code-based	Very fast	0.5 ms	Very large	360 KiB	
NTRU	Very fast	0.3–1.2 ms	Medium	1 KiB	
Ring-LWE	Very fast	0.2–1.5 ms	Medium	2–4 KiB	
LWE	Fast	1.4 ms	Large	11 KiB	
SIDH	Medslow	15–400 ms	Small	0.5 KiB	

See [Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila, ACM CCS 2016] for details/methodology

Other applications of LWE

- KeyGen(): $\mathbf{s} \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_q^n)$
- Enc $(sk, \mu \in \mathbb{Z}_2)$: Pick $\mathbf{c} \in \mathbb{Z}_q^n$ such that $\langle \mathbf{s}, \mathbf{c} \rangle = e \mod q$ where $e \in \mathbb{Z}$ satisfies $e \equiv \mu \mod 2$.
- Dec (sk, \mathbf{c}) : Compute $\langle \mathbf{s}, \mathbf{c} \rangle \in \mathbb{Z}_q$, represent this as $e \in \mathbb{Z} \cap \left[-\frac{q}{2}, \frac{q}{2}\right]$. Return $\mu' \leftarrow e \mod 2$.

 $\mathbf{c}_1 + \mathbf{c}_2$ encrypts $\mu_1 + \mu_2$:

$$\langle \mathbf{s}, \mathbf{c}_1 + \mathbf{c}_2 \rangle = \langle \mathbf{s}, \mathbf{c}_1 \rangle + \langle \mathbf{s}, \mathbf{c}_2 \rangle = e_1 + e_2 \mod q$$

Decryption will work as long as the error $e_1 + e_2$ remains below q/2.

[Brakerski, Vaikuntanathan; FOCS 2011]

Let $\mathbf{c}_1 \otimes \mathbf{c}_2 = (c_{1,i} \cdot c_{2,j})_{i,j} \in \mathbb{Z}_q^{n^2}$ be the tensor product (or Kronecker product). $\mathbf{c}_1 \otimes \mathbf{c}_2$ is the encryption of $\mu_1 \mu_2$ under secret key $\mathbf{s} \otimes \mathbf{s}$:

$$\langle \mathbf{s} \otimes \mathbf{s}, \mathbf{c}_1 \otimes \mathbf{c}_2 \rangle = \langle \mathbf{s}, \mathbf{c}_1 \rangle \cdot \langle \mathbf{s}, \mathbf{c}_2 \rangle = e_1 \cdot e_2 \mod q$$

Decryption will work as long as the error $e_1 \cdot e_2$ remains below q/2.

- Error conditions mean that the number of additions and multiplications is limited.
- Multiplication increases the dimension (exponentially), so the number of multiplications is again limited.
- There are techniques to resolve both of these issues.
 - Key switching allows converting the dimension of a ciphertext.
 - Modulus switching and bootstrapping are used to deal with the error rate.

Digital signatures [Lyubashevsky 2011]

- KeyGen(): $\mathbf{S} \stackrel{\$}{\leftarrow} \{-d, \dots, 0, \dots, d\}^{m \times k}, A \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times m}, \mathbf{T} \leftarrow \mathbf{AS}.$ Secret key: \mathbf{S} ; public key: $(\mathbf{A}, \mathbf{T}).$
- Sign(S, μ): $\mathbf{y} \stackrel{\$}{\leftarrow} \chi^m$; $\mathbf{c} \leftarrow H(\mathbf{A}\mathbf{y}, \mu)$; $\mathbf{z} \leftarrow \mathbf{S}\mathbf{c} + \mathbf{y}$. With prob. $p(\mathbf{z})$ output (\mathbf{z}, \mathbf{c}) , else restart Sign. "Rejection sampling"
- Vfy((**A**, **T**), μ , (**z**, **c**)): Accept iff $||\mathbf{z}|| \le \eta \sigma \sqrt{m}$ and $\mathbf{c} = H(\mathbf{A}\mathbf{z} \mathbf{T}\mathbf{c}, \mu)$

Post-quantum signature sizes

	Public key		Signature		
RSA 3072-bit	Small	0.3 KiB	Small	0.3 KiB	
ECDSA nistp256	Very small	0.03 KiB	Very small	0.03 KiB	
Hash-based (stateful)	Small	0.9 KiB	Medium	3.6 KiB	
Hash-based (stateless)	Small	1 KiB	Large	32 KiB	
Lattice-based (ignoring tightness)	Medium	1.5–8 KiB	Medium	3–9 KiB	
Lattice-based (respecting tightness)	Very large	1330 KiB	Small	1.2 KiB	
SIDH	Small	0.3–0.75 KiB	Very large	120–138 KiB	

See [Bindel, Herath, McKague, Stebila PQCrypto 2017] for details

Summary

- LWE and ring-LWE problems
 - Search, decision, short secrets
- Reduction from GapSVP to LWE
- Public key encryption from LWE
 - Regev
 - Lindner–Peikert
- Key exchange from LWE / ring-LWE
- Other applications of LWE

More reading

- Post-Quantum Cryptography by Bernstein, Buchmann, Dahmen
- A Decade of Lattice Cryptography by Chris Peikert <u>https://web.eecs.umich.edu/~cpeikert/pubs/lattice-survey.pdf</u>