Part 2 - LWE-based cryptography

Douglas Stebila McMaster

Funding acknowledgements:
SAC Summer School • Université d'Ottawa • August 14, 2017
https://www.douglas.stebila.ca/research/presentations

Post-quantum crypto

Classical crypto with no known exponential quantum speedup

Quantum-safe crypto

Classical post-quantum crypto

Quantum crypto

Quantum key distribution

Quantum random number generators

Quantum channels

Quantum blind computation

Today's agenda

1. Quantum computing and its impact on cryptography (Mosca)
2. LWE-based cryptography (Stebila)
3. Isogeny-based cryptography (Jao)
4. Additional topics

- Security models for post-quantum cryptography (Jao)
- Applications (Stebila)

Post-Quantum
Cryptography

Topics excluded:

- Code-based cryptography
- Hash-based signatures
- Multivariate cryptography

Learning with errors problems

Solving systems of linear equations

$\mathbb{Z}_{13}^{7 \times 4}$			
4	1	11	10
5	5	9	5
3	9	0	10
1	3	3	2
12	7	3	4
6	5	11	4
3	3	5	0

secret

$\mathbb{Z}_{13}^{4 \times 1}$

$\mathbb{Z}_{13}^{7 \times 1}$

$=$| 4 |
| :---: |
| 8 |
| 1 |
| 10 |
| 4 |
| 12 |
| 9 |

Linear system problem: given blue, find red

Solving systems of linear equations

Linear system problem: given blue, find red

Learning with errors problem

random
${ }^{7 \times 4}$
\mathbb{Z}_{13}

4	1	11	10
5	5	9	5
3	9	0	10
1	3	3	2
12	7	3	4
6	5	11	4
3	3	5	0

\times

secret

$\mathbb{Z}_{13}^{4 \times 1}$

6
9
11
11

small noise
$\mathbb{Z}_{13}^{7 \times 1}$
$\mathbb{Z}_{13}^{7 \times 1}$

0
-1
1
1
1
0
-1
:---:
7
2
11
5
12
8

Learning with errors problem

random $\mathbb{Z}_{13}^{7 \times 4}$			
4	1	11	10
5	5	9	5
3	9	0	10
1	3	3	2
12	7	3	4
6	5	11	4
3	3	5	0

secret
$\mathbb{Z}_{13}^{4 \times 1}$

small noise
$\mathbb{Z}_{13}^{7 \times 1}$
$\mathbb{Z}_{13}^{7 \times 1}$

4
7
2
11
5
12
8

Search LWE problem: given blue, find red

Search LWE problem

Let n, m, and q be positive integers. Let χ_{s} and χ_{e} be distributions over \mathbb{Z}. Let $\mathbf{s} \stackrel{\&}{\leftarrow} \chi_{s}^{n}$. Let $\mathbf{a}_{i} \stackrel{\&}{\leftarrow} \mathcal{U}\left(\mathbb{Z}_{q}^{n}\right), e_{i} \stackrel{\$}{\leftarrow} \chi_{e}$, and set $b_{i} \leftarrow\left\langle\mathbf{a}_{i}, \mathbf{s}\right\rangle+e_{i} \bmod q$, for $i=1, \ldots, m$.

The search $L W E$ problem for $\left(n, m, q, \chi_{s}, \chi_{e}\right)$ is to find s given $\left(\mathbf{a}_{i}, b_{i}\right)_{i=1}^{m}$. In particular, for algorithm \mathcal{A}, define the advantage

$$
\begin{aligned}
\operatorname{Adv}_{n, m, q, \chi_{s}, \chi_{e}}^{\text {Ime }}(\mathcal{A})=\operatorname{Pr}[\mathbf{s} & \stackrel{\$}{\leftarrow} \chi_{s}^{n} ; \mathbf{a}_{i} \stackrel{\$}{\leftarrow} \mathcal{U}\left(\mathbb{Z}_{q}^{n}\right) ; e_{i} \stackrel{\$}{\leftarrow} \chi_{e} ; \\
b_{i} & \left.\left.\leftarrow\left\langle\mathbf{a}_{i}, \mathbf{s}_{i}\right\rangle+e \bmod q: \mathcal{A}\left(\left(\mathbf{a}_{i}, b_{i}\right)_{i=1}^{m}\right)=\mathbf{s}\right)\right] .
\end{aligned}
$$

Decision learning with errors problem

random $\mathbb{Z}_{13}^{7 \times 4}$			
4	1	11	10
5	5	9	5
3	9	0	10
1	3	3	2
12	7	3	4
6	5	11	4
3	3	5	0

secret
$\mathbb{Z}_{13}^{4 \times 1}$

small noise
$\mathbb{Z}_{13}^{7 \times 1}$

$\mathbb{Z}_{13}^{7 \times 1}$
looks random

$=$| |
| :---: |
| $\mathbb{Z}_{13}^{7 \times 1}$ |
| 4 |
| 7 |
| 2 |
| 11 |
| 5 |
| 12 |
| 8 |

Decision LWE problem: given blue, distinguish green from random

Decision LWE problem

Let n and q be positive integers. Let χ_{s} and χ_{e} be distributions over \mathbb{Z}. Let $\mathbf{s} \stackrel{\$}{\leftarrow} \chi_{s}^{n}$. Define the following two oracles:

- $O_{\chi_{e}, \mathbf{s}}: \mathbf{a} \stackrel{\$}{\leftarrow} \mathcal{U}\left(\mathbb{Z}_{q}^{n}\right), e \stackrel{\$}{\leftarrow} \chi_{e} ;$ return $(\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle+e \bmod q)$.
- $U: \mathbf{a} \stackrel{\$}{\leftarrow} \mathcal{U}\left(\mathbb{Z}_{q}^{n}\right), u \stackrel{\$}{\leftarrow} \mathcal{U}\left(\mathbb{Z}_{q}\right) ;$ return (\mathbf{a}, u).

The decision $\mathbf{L} W \boldsymbol{E}$ problem for $\left(n, q, \chi_{s}, \chi_{e}\right)$ is to distinguish $O_{\chi, \mathrm{s}}$ from U.

In particular, for algorithm \mathcal{A}, define the advantage

$$
\operatorname{Adv}_{n, q, \chi_{s}, \chi_{e}}^{\text {dllwe }}(\mathcal{A})=\left|\operatorname{Pr}\left(\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{n}: \mathcal{A}^{O \chi_{e}, \mathbf{s}}()=1\right)-\operatorname{Pr}\left(\mathcal{A}^{U}()=1\right)\right|
$$

Choice of error distribution

- Usually a discrete Gaussian distribution of width $s=\alpha q$ for error rate $\alpha<1$
- Define the Gaussian function

$$
\rho_{s}(\mathbf{x})=\exp \left(-\pi\|\mathbf{x}\|^{2} / s^{2}\right)
$$

- The continuous Gaussian distribution has probability density function

$$
f(\mathbf{x})=\rho_{s}(\mathbf{x}) / \int_{\mathbb{R}^{n}} \rho_{s}(\mathbf{z}) d \mathbf{z}=\rho_{s}(\mathbf{x}) / s^{n}
$$

Short secrets

- The secret distribution χ_{s} was originally taken to be the uniform distribution
- Short secrets: use $\chi_{s}=\chi_{e}$
- There's a tight reduction showing that LWE with short secrets is hard if LWE with uniform secrets is hard

Toy example versus real-world example

$\mathbb{Z}_{13}^{7 \times 4}$			
4	1	11	10
5	5	9	5
3	9	0	10
1	3	3	2
12	7	3	4
6	5	11	4
3	3	5	0

$$
752 \times 8 \times 15 \text { bits }=11 \mathrm{KiB}
$$

Ring learning with errors problem

random
$\pi^{7 \times 4}$
\mathbb{Z}_{13}

4	1	11	10
10	4	1	11
11	10	4	1
1	11	10	4
4	1	11	10
10	4	1	11
11	10	4	1

Ring learning with errors problem

random
7×4
\mathbb{Z}_{13}

4	1	11	10
3	4	1	11
2	3	4	1
12	2	3	4
9	12	2	3
10	9	12	2
11	10	9	12

Each row is the cyclic shift of the row above
with a special wrapping rule:
x wraps to $-x$ mod 13.

Ring learning with errors problem

random

$\pi^{7 \times 4}$
\mathbb{Z}_{13}

| 4 | 1 | 11 | 10 | Each row is the cyclic |
| :--- | :--- | :--- | :--- | :--- | shift of the row above

with a special wrapping rule:
x wraps to $-x$ mod 13 .

So I only need to tell you the first row.

Ring learning with errors problem

$$
\mathbb{Z}_{13}[x] /\left\langle x^{4}+1\right\rangle
$$

$4+1 x+11 x^{2}+10 x^{3}$
\times $6+9 x+11 x^{2}+11 x^{3}$
$+\quad 0-1 x+1 x^{2}+1 x^{3}$
$=10+5 x+10 x^{2}+7 x^{3}$

Ring learning with errors problem

$$
\mathbb{Z}_{13}[x] /\left\langle x^{4}+1\right\rangle
$$

$$
4+1 x+11 x^{2}+10 x^{3} \quad \text { random }
$$

\square

$$
=10+5 x+10 x^{2}+7 x^{3}
$$

Search ring-LWE problem: given blue, find red

Search ring-LWE problem

Let $R=\mathbb{Z}[X] /\left\langle X^{n}+1\right\rangle$, where n is a power of 2 .
Let q be an integer, and define $R_{q}=R / q R$, i.e., $R_{q}=\mathbb{Z}_{q}[X] /\left\langle X^{n}+1\right\rangle$.
Let χ_{s} and χ_{e} be distributions over R_{q}. Let $s \stackrel{\$}{\leftarrow} \chi_{s}$. Let $a \stackrel{\$}{\leftarrow} \mathcal{U}\left(R_{q}\right), e \stackrel{\$}{\leftarrow} \chi_{e}$, and set $b \leftarrow a s+e$.

The search ring-LWE problem for $\left(n, q, \chi_{s}, \chi_{e}\right)$ is to find s given (a, b). In particular, for algorithm \mathcal{A} define the advantage

$$
\operatorname{Adv}_{n, q, \chi_{s}, \chi_{e}}^{\text {rlwe }}(\mathcal{A})=\operatorname{Pr}\left[s \stackrel{\$}{\leftarrow} \chi_{s} ; a \stackrel{\$}{\leftarrow} \mathcal{U}\left(R_{q}\right) ; e \stackrel{\$}{\leftarrow} \chi_{e} ; b \leftarrow a s+e: \mathcal{A}(a, b)=s\right] .
$$

Decision ring-LWE problem

Let n and q be positive integers. Let χ_{s} and χ_{e} be distributions over R_{q}. Let $s \stackrel{\$}{\leftarrow} \chi_{s}$. Define the following two oracles:

- $O_{\chi_{e}, s}: a \stackrel{\$}{\leftarrow} \mathcal{U}\left(R_{q}\right), e \stackrel{\$}{\leftarrow} \chi_{e} ;$ return $(a, a s+e)$.
- $U: a, u \stackrel{\$}{\leftarrow} \mathcal{U}\left(R_{q}\right) ;$ return (a, u).

The decision ring-LWE problem for $\left(n, q, \chi_{s}, \chi_{e}\right)$ is to distinguish $O_{\chi_{e}, s}$ from U.

In particular, for algorithm \mathcal{A}, define the advantage

$$
\operatorname{Adv}_{n, q, \chi_{s}, \chi_{e}}^{\text {drlwe }}(\mathcal{A})=\left|\operatorname{Pr}\left(s \stackrel{\Phi}{\leftarrow} R_{q}: \mathcal{A}^{O_{\chi}, s}()=1\right)-\operatorname{Pr}\left(\mathcal{A}^{U}()=1\right)\right|
$$

Problems

Computational
 LWE problem

Decision
 LWE problem

with or without short secrets

Computational ring-LWE problem

Search-decision equivalence

- Easy fact: If the search LWE problem is easy, then the decision LWE problem is easy.
- Fact: If the decision LWE problem is easy, then the search LWE problem is easy.
- Requires $n q$ calls to decision oracle
- Intuition: test the each value for the first component of the secret, then move on to the next one, and so on.

NTRU problem

For an invertible $s \in R_{q}^{*}$ and a distribution χ on R, define $N_{s, \chi}$ to be the

The NTRU learning problem is: given independent samples $a_{i} \in R_{q}$ where every sample is distributed according to either: (1) $N_{s, \chi}$ for some randomly chosen $s \in R_{q}$ (fixed for all samples), or (2) the uniform distribution, distinguish which is the case.

"Lattice-based"

Hardness of decision LWE - "lattice-based"

poly-time [Regev05, BLPRS13]
decision LWE

Lattices

Let $\mathbf{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{n}\right\} \subseteq \mathbb{Z}_{q}^{n \times n}$ be a set of linearly independent basis vectors for \mathbb{Z}_{q}^{n}. Define the corresponding lattice

$$
\mathcal{L}=\mathcal{L}(\mathbf{B})=\left\{\sum_{i=1}^{n} z_{i} \mathbf{b}_{i}: z_{i} \in \mathbb{Z}\right\} .
$$

(In other words, a lattice is a set of integer linear combinations.)
Define the minimum distance of a lattice as

$$
\lambda_{1}(\mathcal{L})=\min _{\mathbf{v} \in \mathcal{L} \backslash\{\mathbf{0}\}}\|\mathbf{v}\|
$$

Shortest vector problem

The shortest vector problem (SVP) is: given a basis \mathbf{B} for some lattice $\mathcal{L}=$ $\mathcal{L}(\mathbf{B})$, find a shortest non-zero vector, i.e., find $\mathbf{v} \in \mathcal{L}$ such that $\|\mathbf{v}\|=\lambda_{1}(\mathcal{L})$.

The decision approximate shortest vector problem $\left(\right.$ GapSVP $\left._{\gamma}\right)$ is: given a basis \mathbf{B} for some lattice $\mathcal{L}=\mathcal{L}(\mathbf{B})$ where either $\lambda_{1}(\mathcal{L}) \leq 1$ or $\lambda_{1}(\mathcal{L})>\gamma$, determine which is the case.

Regev's iterative reduction

Theorem. [Reg05] For any modulus $q \leq 2^{\text {poly }(n)}$ and any discretized Gaussian error distribution χ of parameter $\alpha q \geq 2 \sqrt{n}$ where $0<\alpha<1$, solving the decision LWE problem for (n, q, \mathcal{U}, χ) with at most $m=\operatorname{poly}(n)$ samples is at least as hard as quantumly solving GapSVP $_{\gamma}$ and SIVP $_{\gamma}$ on arbitrary n dimensional lattices for some $\gamma=\tilde{O}(n / \alpha)$.

The polynomial-time reduction is extremely non-tight: approximately $O\left(n^{13}\right)$.

Solving the (approximate) shortest vector problem

The complexity of GapSVP_{γ} depends heavily on how γ and n relate, and get harder for smaller γ.

Algorithm	Time	Approx. factor γ
LLL algorithm	poly (n)	$2^{\Omega(n \log \log n / \log n)}$
various	$2^{\Omega(n \log n)}$	$\operatorname{poly}(n)$
various	$2^{\Omega(n)}$ time and space	$\operatorname{poly}(n)$
Sch87	$2^{\tilde{\Omega}(n / k)}$	2^{k}
	NP \cap co-NP	$\geq \sqrt{n}$
	NP-hard	$n^{o(1)}$

In cryptography, we tend to use $\gamma \approx n$.

Picking parameters

- Estimate parameters based on runtime of lattice reduction algorithms.
- Based on reductions:
- Calculate required runtime for GapSVP or SVP based on tightness gaps and constraints in each reduction
- Pick parameters based on best known GapSVP or SVP solvers or known lower bounds
- Based on cryptanalysis:
- Ignore tightness in reductions.
- Pick parameters based on best known LWE solvers relying on lattice solvers.

Ring-LWE

Cyclic structure
\Rightarrow Save communication, more efficient computation

4 KiB representation

LWE

$752 \times 8 \times 15$ bits $=11 \mathrm{KiB}$

Why consider (slower, bigger) LWE?

Generic vs. ideal lattices

- Ring-LWE matrices have additional structure
- Relies on hardness of a problem in ideal lattices
- LWE matrices have no additional structure
- Relies on hardness of a problem in generic lattices
- NTRU also relies on a problem in a type of ideal lattices
- Currently, best algorithms for ideal lattice problems are essentially the same as for generic lattices
- Small constant factor improvement in some cases
- Very recent quantum polynomial time algorithm for Ideal-SVP
(http://eprint.iacr.org/2016/885) but not immediately applicable to ringLWE

> If we want to eliminate this additional structure, can we still get an efficient protocol?

Public key encryption from LWE

Regev's public key encryption scheme

Let n, m, q, χ be LWE parameters.

- KeyGen ()$: \mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{n} . \mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{m \times n} . \mathbf{e} \stackrel{\$}{\leftarrow} \chi\left(\mathbb{Z}_{q}^{m}\right) . \tilde{\mathbf{b}} \leftarrow \mathbf{A s}+\mathbf{e}$. Return $p k \leftarrow(\mathbf{A}, \mathbf{b}), s k \leftarrow \mathbf{s}$.
- $\operatorname{Enc}(p k, x \in\{0,1\}): \mathbf{s}^{\prime} \stackrel{\$}{\leftarrow}\{0,1\}^{m} \cdot \mathbf{b}^{\prime} \leftarrow \mathbf{s}^{\prime} \mathbf{A} \cdot v^{\prime} \leftarrow\left\langle\mathbf{s}^{\prime}, \mathbf{b}\right\rangle$. $c \leftarrow x \cdot \operatorname{encode}\left(v^{\prime}\right)$. Return ($\left.\mathbf{b}^{\prime}, c\right)$.
- $\operatorname{Dec}\left(s k,\left(\mathbf{b}^{\prime}, c\right)\right): v \leftarrow\left\langle\mathbf{b}^{\prime}, \mathbf{s}\right\rangle$. Return $\operatorname{decode}(v)$.

Encode/decode

$$
\begin{aligned}
& \operatorname{encode}(x \in\{0,1\}) \leftarrow x \cdot\left\lfloor\frac{q}{2}\right\rfloor \\
& \qquad \operatorname{decode}\left(\bar{x} \in \mathbb{Z}_{q}\right) \leftarrow \begin{cases}0, & \text { if } \bar{x} \in\left[-\left\lfloor\frac{q}{4}\right\rfloor,\left\lfloor\frac{q}{4}\right\rfloor\right) \\
1, & \text { otherwise }\end{cases}
\end{aligned}
$$

Lindner-Peikert public key encryption

Let n, q, χ be LWE parameters.

- KeyGen ()$: \mathbf{s} \stackrel{\$}{\leftarrow} \chi\left(\mathbb{Z}^{n}\right) . \mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{n \times n} \cdot \mathbf{e} \stackrel{\$}{\leftarrow} \chi\left(\mathbb{Z}^{n}\right) . \tilde{\mathbf{b}} \leftarrow \mathbf{A s}+\mathbf{e}$. Return $p k \leftarrow(\mathbf{A}, \tilde{\mathbf{b}})$ and $s k \leftarrow \mathbf{s}$.
- $\operatorname{Enc}(p k, x \in\{0,1\}): \mathbf{s}^{\prime} \stackrel{\Phi}{\leftarrow} \chi\left(\mathbb{Z}^{n}\right) \cdot \mathbf{e}^{\prime} \stackrel{\$}{\leftarrow} \chi\left(\mathbb{Z}^{n}\right) . \tilde{\mathbf{b}}^{\prime} \leftarrow \mathbf{s}^{\prime} \mathbf{A}+\mathbf{e}^{\prime} . e^{\prime \prime} \stackrel{\$}{\leftarrow} \chi(\mathbb{Z})$. $\tilde{v}^{\prime} \leftarrow\left\langle\mathbf{s}^{\prime}, \tilde{\mathbf{b}}\right\rangle+e^{\prime \prime} . c \leftarrow \operatorname{encode}(x)+\tilde{v}^{\prime}$. Return $c t x t \leftarrow\left(\tilde{\mathbf{b}}^{\prime}, c\right)$.
- $\operatorname{Dec}\left(s k,\left(\tilde{\mathbf{b}}^{\prime}, c\right)\right): v \leftarrow\left\langle\tilde{\mathbf{b}}^{\prime}, \mathbf{s}\right\rangle$. Return decode $(c-v)$.

Correctness

Sender and receiver approximately compute the same shared secret $\mathbf{s}^{\prime} \mathbf{A s}$

$$
\begin{aligned}
\tilde{v}^{\prime} & =\left\langle\mathbf{s}^{\prime}, \tilde{\mathbf{b}}\right\rangle+e^{\prime \prime}=\mathbf{s}^{\prime}(\mathbf{A} \mathbf{s}+\mathbf{e})+e^{\prime \prime}=\mathbf{s}^{\prime} \mathbf{A} \mathbf{s}+\left\langle\mathbf{s}^{\prime}, \mathbf{e}\right\rangle+e^{\prime \prime} \approx \mathbf{s}^{\prime} \mathbf{A} \mathbf{s} \\
v & =\left\langle\tilde{\mathbf{b}}^{\prime}, \mathbf{s}\right\rangle=\left(\mathbf{s}^{\prime} \mathbf{A}+\mathbf{e}^{\prime}\right) \mathbf{s}=\mathbf{s}^{\prime} \mathbf{A} \mathbf{s}+\left\langle\mathbf{e}^{\prime}, \mathbf{s}\right\rangle \approx \mathbf{s}^{\prime} \mathbf{A} \mathbf{s}
\end{aligned}
$$

Difference between Regev and Lindner-Peikert

Regev:

- Bob's public key is $\mathbf{s}^{\prime} \mathbf{A}$ where $\mathbf{s}^{\prime} \stackrel{\$}{\leftarrow}\{0,1\}^{m}$
- Encryption mask is $\left\langle\mathbf{s}^{\prime}, \mathbf{b}\right\rangle$

Lindner-Peikert:

- Bob's public key is $\mathbf{s}^{\prime} \mathbf{A}+\mathbf{e}^{\prime}$ where $\mathbf{s}^{\prime} \stackrel{\$}{\leftarrow} \chi_{e}$
- Encryption mask is $\left\langle\mathbf{s}^{\prime}, \mathbf{b}\right\rangle+e^{\prime \prime}$

In Regev, Bob's public key is a subset sum instance. In Lindner-Peikert, Bob's public key and encryption mask is just another LWE instance.

IND-CPA security of Lindner-Peikert

Indistinguishable against chosen plaintext attacks

Theorem. If the decision LWE problem is hard, then Lindner-Peikert is IND-CPA-secure. Let n, q, χ be LWE parameters. Let \mathcal{A} be an algorithm. Then there exist algorithms $\mathcal{B}_{1}, \mathcal{B}_{2}$ such that

$$
\operatorname{Adv}_{\mathbf{L P}[n, q, \chi]}^{\text {ind-cpa }}(\mathcal{A}) \leq \operatorname{Adv}_{n, q, \chi}^{\text {dlwe }}\left(\mathcal{A} \circ \mathcal{B}_{1}\right)+\operatorname{Adv}_{n, q, \chi}^{\text {dlwe }}\left(\mathcal{A} \circ \mathcal{B}_{2}\right)
$$

IND-CPA security of Lindner-Peikert

Game 0:

Game 1:
\rightarrow Rewrite \rightarrow
1: $\mathbf{A} \stackrel{\$}{\stackrel{\&}{\leftarrow}\left(\mathbb{Z}_{q}^{n \times n}\right)}$
$\tilde{\mathrm{b}} \stackrel{\$}{\leftarrow} \mathcal{U}\left(\mathbb{Z}_{q}^{n}\right)$
3: $\mathbf{s}^{\prime}, \mathbf{e}^{\prime} \stackrel{\$}{\leftarrow} \chi\left(\mathbb{Z}_{q}^{n}\right)$
4: $\tilde{\mathbf{b}}^{\prime} \leftarrow \mathbf{s}^{\prime} \mathbf{A}+\mathbf{e}^{\prime}$
5: $e^{\prime \prime} \stackrel{\$}{\leftarrow} \chi\left(\mathbb{Z}_{q}\right)$
6: $\tilde{v}^{\prime} \leftarrow \mathbf{s}^{\prime} \tilde{\mathbf{b}}+e^{\prime \prime}$
7: $c_{0} \leftarrow \operatorname{encode}(0)+\tilde{v}^{\prime}$
8: $c_{1} \leftarrow \operatorname{encode}(1)+\tilde{v}^{\prime}$
9: $b^{*} \stackrel{\$}{\leftarrow} \mathcal{U}(\{0,1\})$
10: return

$$
\left(\mathbf{A}, \tilde{\mathbf{b}}, \tilde{\mathbf{b}}^{\prime}, c_{b^{*}}\right)
$$

Game 2:
1: $\mathbf{A} \stackrel{\$}{\leftarrow} \mathcal{U}\left(\mathbb{Z}_{q}^{n \times n}\right)$
2: $\tilde{\mathbf{b}} \stackrel{\$}{\leftarrow} \mathcal{U}\left(\mathbb{Z}_{q}^{n}\right)$
3: $\mathbf{s}^{\prime} \stackrel{\$}{\leftarrow} \chi\left(\mathbb{Z}_{q}^{n}\right)$
4: $\left[\mathbf{e}^{\prime} \| e^{\prime \prime}\right] \stackrel{\$}{\leftarrow} \chi\left(\mathbb{Z}_{q}^{n+1}\right)$
5:

$$
\left[\tilde{\mathbf{b}}^{\prime} \| \tilde{v}^{\prime}\right] \leftarrow \mathbf{s}^{\prime}[\mathbf{A} \| \tilde{\mathbf{b}}]+\left[\mathbf{e}^{\prime} \| e^{\prime \prime}\right]
$$

6: $c_{0} \leftarrow \operatorname{encode}(0)+\tilde{v}^{\prime}$
7: $c_{1} \leftarrow \operatorname{encode}(1)+\tilde{v}^{\prime}$
8: $b^{*} \stackrel{\$}{\leftarrow} \mathcal{U}(\{0,1\})$
9: return
$\left(\mathbf{A}, \tilde{\mathbf{b}}, \tilde{\mathbf{b}}^{\prime}, c_{b^{*}}\right)$

IND-CPA security of Lindner-Peikert

Game 2:
\rightarrow Decision-LWE \rightarrow
$\mathbf{A} \stackrel{\$}{\leftarrow} \mathcal{U}\left(\mathbb{Z}_{q}^{n \times n}\right)$
$\tilde{\mathbf{b}} \stackrel{\$}{\leftarrow} \mathcal{U}\left(\mathbb{Z}_{q}^{n}\right)$
$\mathbf{s}^{\prime} \stackrel{\$}{\leftarrow} \chi\left(\mathbb{Z}_{q}^{n}\right)$
$\left[\mathbf{e}^{\prime} \| e^{\prime \prime}\right] \stackrel{\$}{\leftarrow} \chi\left(\mathbb{Z}_{q}^{n+1}\right)$
5:

$$
\left[\tilde{\mathbf{b}}^{\prime} \| \tilde{v}^{\prime}\right] \leftarrow \mathbf{s}^{\prime}[\mathbf{A} \| \tilde{\mathbf{b}}]+\left[\mathbf{e}^{\prime} \| e^{\prime \prime}\right]
$$

6: $c_{0} \leftarrow \operatorname{encode}(0)+\tilde{v}^{\prime}$
$7: c_{1} \leftarrow \operatorname{encode}(1)+\tilde{v}^{\prime}$
8: $b^{*} \stackrel{\$}{\leftarrow} \mathcal{U}(\{0,1\})$
9: return
$\left(\mathbf{A}, \tilde{\mathbf{b}}, \tilde{\mathbf{b}}^{\prime}, c_{b^{*}}\right)$

Game 3:

1: $\mathbf{A} \stackrel{\$}{\stackrel{ }{\leftarrow}}\left(\mathbb{Z}_{q}^{n \times n}\right)$
2: $\tilde{\mathbf{b}} \stackrel{\$}{\leftarrow} \mathcal{U}\left(\mathbb{Z}_{q}^{n}\right)$
3: $\left[\tilde{\mathbf{b}}^{\prime} \| \tilde{v}^{\prime}\right] \stackrel{\$}{\leftarrow} \mathcal{U}\left(\mathbb{Z}_{q}^{n+1}\right)$
4: $c_{0} \leftarrow \operatorname{encode}(0)+\tilde{v}^{\prime}$
$5: c_{1} \leftarrow \operatorname{encode}(1)+\tilde{v}^{\prime}$
6: $b^{*} \stackrel{\$}{\leftarrow} \mathcal{U}(\{0,1\})$
7: return
$\left(\mathbf{A}, \tilde{\mathbf{b}}, \tilde{\mathbf{b}}^{\prime}, c_{b^{*}}\right)$

Game 4:
1: $\mathbf{A} \stackrel{\$}{\stackrel{\&}{\leftarrow}}\left(\mathbb{Z}_{q}^{n \times n}\right)$
2: $\tilde{\mathbf{b}} \stackrel{\$}{\leftarrow} \mathcal{U}\left(\mathbb{Z}_{q}^{n}\right)$
3: $\left[\tilde{\mathbf{b}}^{\prime} \| \tilde{v}^{\prime}\right] \stackrel{\$}{\leftarrow} \mathcal{U}\left(\mathbb{Z}_{q}^{n+1}\right)$
4: $b^{*} \stackrel{\$}{\leftarrow} \mathcal{U}(\{0,1\})$
5: return $\left(\mathbf{A}, \mathbf{b}, \tilde{\mathbf{b}}^{\prime}, \tilde{v}^{\prime}\right)$
Independent of hidden bit

Public key validation

- No public key validation possible in IND-CPA KEMs/PKEs from LWE/ringLWE
- Key reuse in LWE/ring-LWE leads to real attacks following from searchdecision equivalence
- Comment in [Peikert, PQCrypto 2014]
- Attack described in [Fluhrer, Eprint 2016]
- Need to ensure usage is okay with just IND-CPA
- Or construct IND-CCA KEM/PKE using Fujisaki-Okamoto transform or quantum-resistant variant [Targhi-Unruh, TCC 2016] [Hofheinz et al., Eprint 2017]

Direct key agreement

LWE and ring-LWE public key encryption and key exchange

Regev
 STOC 2005

- Public key encryption from LWE

Lyubashevsky, Peikert, Regev

Eurocrypt 2010

- Public key encryption from ring-LWE

Lindner, Peikert

ePrint 2010, CT-RSA 2011

- Public key encryption from LWE and ring-LWE
- Approximate key exchange from LWE

Ding, Xie, Lin

ePrint 2012

- Key exchange from LWE and ring-LWE with single-bit reconciliation

Peikert

PQCrypto 2014

- Key encapsulation mechanism based on ring-LWE and variant single-bit reconciliation

Bos, Costello, Naehrig, Stebila IEEE S\&P 2015
 - Implementation of Peikert's ring-LWE key exchange, testing in TLS 1.2

Basic LWE key agreement (unauthenticated)

Based on Lindner-Peikert LWE public key encryption scheme

$$
\text { public: "big" } A \text { in } \mathbf{Z}_{q}{ }^{n \times m}
$$

Alice

secret:
random "small" s, e in $\mathbf{Z}_{q}{ }^{m}$

Bob

secret:
random "small" s', e' in $\mathbf{Z}_{q}{ }^{n}$
shared secret:
b 's = s'As + e's $\approx s^{\prime} A s$
shared secret:
$s^{\prime} b \approx s^{\prime} A s$

These are only approximately equal \Rightarrow need rounding

Rounding

- Each coefficient of the polynomial is an integer modulo q
- Treat each coefficient independently
- Techniques by Ding [Din12] and Peikert [Pei14]

Basic rounding

- Round either to 0 or $q / 2$
- Treat $q / 2$ as 1

This works most of the time: prob. failure 2^{-10}.

Not good enough: we need exact key agreement.

Rounding (Peikert)

Bob says which of two regions the value is in: \square or

Rounding (Peikert)

- If | alice - bob | $\leq q / 8$, then this always works.

- Security not affected: revealing or leaks no information

Exact LWE key agreement (unauthenticated)

public: "big" A in $\mathbf{Z}_{q}{ }^{n \times m}$

Alice
secret:
random "small" s, e in $\mathbf{Z}_{q}{ }^{m}$

Bob

secret:
random "small" s', e' in $\mathbf{Z}_{q}{ }^{n}$

$$
b=A s+e
$$

$$
b^{\prime}=s^{\prime} A+e^{\prime}, 4 \text { or }
$$

shared secret:
shared secret:
round(b's)
round(s'b)

Exact ring-LWE key agreement (unauthenticated)

public: "big" a in $R_{q}=\mathbf{Z}_{q}[x] /\left(x^{n}+1\right)$

Alice
secret:
random "small" s, e in R_{q}

Bob

secret:

random "small" s', e' in R_{q}

shared secret:
shared secret:
round($s \cdot b^{\prime}$)
round ($b \cdot s^{\prime}$)

Exact LWE key agreement - "Frodo"

$\operatorname{seed}_{\mathbf{A}} \frac{\text { Alice }}{\stackrel{\$}{\leftarrow} U\left(\{0,1\}^{s}\right)}$
$\mathbf{A} \leftarrow \operatorname{Gen}\left(\operatorname{seed}_{\mathbf{A}}\right)$

$$
\xrightarrow[\{0,1\}^{s} \times \mathbb{Z}_{q}^{n} \times \bar{n}]{\operatorname{seed}_{\mathbf{A}}, \mathbf{B}}
$$

$$
\mathbf{A} \leftarrow \operatorname{Gen}\left(\operatorname{seed}_{\mathbf{A}}\right)
$$

$$
\mathbf{S}^{\prime} . \mathbf{E}^{\prime} \stackrel{\$}{\leftarrow} \chi\left(\mathbb{Z}_{m}^{\bar{m}} \times n\right)
$$

$$
\mathbf{B}^{\prime} \leftarrow \mathbf{S}^{\prime} \mathbf{A}+\mathbf{E}^{\prime}
$$

$$
\left.K \leftarrow \operatorname{rec} \mathbf{B}^{\prime} \mathbf{S}, \mathbf{C}\right)
$$

$$
\begin{gathered}
\mathbf{E}^{\prime \prime} \stackrel{\&}{\leftarrow} \chi\left(\mathbb{Z}_{m}^{\bar{m} \times \bar{n}}\right) \\
\mathbf{V \leftarrow \mathbf { S } ^ { \prime } \mathbf { B } + \mathbf { E } ^ { \prime \prime }} \\
\mathbf{C} \leftarrow\langle\mathbf{V}\rangle_{2^{B}}
\end{gathered}
$$

$$
K \leftarrow\lfloor\mathbf{V}\rceil_{2}^{B}
$$

Secure if

 decision learning with errors problem is hard(and Gen is a random oracle).

Rounding

Error distribution

- We extract 4 bits from each of the 64 matrix entries in the shared secret.
- More granular form of Peikert's rounding.

- Close to discrete Gaussian in terms of Rényi divergence (1.000301)
- Only requires 12 bits of randomness to sample

Parameters

All known variants of the sieving algorithm require a list of vectors to be created of this size

"Recommended"

- 144-bit classical security, 130-bit quantum security, 103-bit plausible lower bound
- $n=752, m=8, q=2^{15}$
- $\chi=$ approximation to rounded Gaussian with 11 elements
- Failure: 2-38.9
- Total communication: 22.6 KiB

"Paranoid"

- 177-bit classical security, 161-bit quantum security, 128-bit plausible lower bound
- $n=864, m=8, q=2^{15}$
- $\chi=$ approximation to rounded Gaussian with 13 elements
- Failure: 2-33.8
- Total communication: 25.9 KiB

Exact ring-LWE key agreement - "BCNS15"

BCNS15

Public parameters: $n, q, \chi, a \leftarrow s \mathcal{U}\left(R_{q}\right)$		
Alice		Bob
$s, e \leftarrow s \chi\left(R_{q}\right)$		
$\tilde{b} \leftarrow a s+e \in R_{q}$	\xrightarrow{b}	$s^{\prime}, e^{\prime} \leftarrow ¢ \chi \chi\left(R_{q}\right)$
		$\tilde{b}^{\prime} \leftarrow a s^{\prime}+e^{\prime} \in R_{q}$
		$\begin{aligned} & \tilde{v} \leftarrow b s^{\prime}+e^{\prime \prime} \in R_{q} \\ & \bar{v} \leftarrow s \mathrm{dbl}(\tilde{v}) \in R_{2 q} \end{aligned}$
	$\stackrel{\tilde{b}^{\prime}, c}{\leftarrow}$	$\begin{aligned} & c \leftarrow\langle\bar{v} / 2\rangle_{2} \in\{0,1\}^{n} \\ & \left.k_{B} \leftarrow \mid \bar{v} / 2\right]_{2} \in\{0,1\}^{n} \end{aligned}$

Parameters

160-bit classical security, 80-bit quantum security

- $n=1024$
- $q=2^{32}-1$
- χ = discrete Gaussian with parameter sigma $=8 /$ sqrt(2 2π)
- Failure: 2-12800
- Total communication: 8.1 KiB

Implementation aspect 1 :

Polynomial arithmetic

- Polynomial multiplication in $R_{q}=\mathbf{Z}_{q}[x] /\left(x^{1024}+1\right)$ done with Nussbaumer's FFT:

If $2^{m}=r k$, then

$$
\frac{R[X]}{\left\langle X^{2^{m}}+1\right\rangle} \cong \frac{\left(\frac{R[Z]}{\left\langle Z^{r}+1\right\rangle}\right)[X]}{\left\langle X^{k}-Z\right\rangle}
$$

- Rather than working modulo degree-1024 polynomial with coefficients in \mathbf{Z}_{q}, work modulo:
- degree-256 polynomial whose coefficients are themselves polynomials modulo a degree-4 polynomial,
- or degree-32 polynomials whose coefficients are polynomials modulo degree-8 polynomials whose coefficients are polynomials

[^0]Implementation aspect 2:

Sampling discrete Gaussians

- Security proofs require "small" elements sampled within statistical distance 2^{-128} of the true discrete Gaussian
- We use inversion sampling: precompute table of cumulative probabilities
- For us: 52 elements, size $=10000$ bits
- Sampling each coefficient requires six 192-bit integer comparisons and there are 1024 coefficients
- 51•1024 for constant time

Sampling is expensive

Operation

Cycles

constant-time non-constant-time

sample $\stackrel{\&}{\leftarrow} \chi$	1042700	668000
FFT multiplication	342800	-
FFT addition	1660	-
dbl (\cdot) and crossrounding $\langle\cdot\rangle_{2 q, 2}$	23500	21300
rounding $\langle\cdot\rangle_{2 q, 2}$	5500	3,700
reconciliation rec (\cdot, \cdot)	14400	6800

"NewHope"

Alkim, Ducas, Pöppelman, Schwabe.
USENIX Security 2016

- New parameters
- Different error distribution
- Improved performance
- Pseudorandomly generated parameters
- Further performance improvements by others [GS16,LN16,AOPPS17,...]

Google Security Blog

Experimenting with Post-Quantum Cryptography July 7, 2016

```
-k Elements Console Sources Network Timeline Profiles Application Security A
```


Overview

Main Origin

- https://play.google.com Secure Origins
https://www.gstatic.com https://lh3.googleusercont
- https://h4.googleusercont - https://lh5.googleuserconts https://lh6.googleuserconte https:///h3.ggpht.com - https:///h4.ggpht.com - https://lh5.ggpht.com - https://books.google.com - https://ajax.googleapis.com https://www.google.com - https://www.google-analyti -
https://play.google.com View requests in Network Pane

Connection

$$
\begin{aligned}
& \text { Protocol } \begin{array}{l}
\text { TLS 1.2 } \\
\text { Key Exchange } \\
\text { CEECPQ1_ECDSA } \\
\text { Cipher Suite }
\end{array} \text { AES_256_GCM }
\end{aligned}
$$

Certificate
Subject *.google.com
SAN *.google.com
*.android.com
Show more (52 total)
Valid From Thu, 23 Jun 2016 08:33:56 GMT
Valid Until Thu, 15 Sep 2016 08:31:00 GMT
Issuer Google Internet Authority G2

Implementations

Our implementations

- Ring-LWE BCNS15
- LWE Frodo

Pure C implementations
Constant time

Compare with others

- RSA 3072-bit (OpenSSL 1.0.1f)
- ECDH nistp256 (OpenSSL)

Use assembly code

- Ring-LWE NewHope
- NTRU EES743EP1
- SIDH (Isogenies) (MSR)

Pure C implementations

Post-quantum key exchange performance

	Speed		Communication	
RSA 3072-bit	Fast	4 ms	Small	0.3 KiB
ECDH nistp256	Very fast	0.7 ms	Very small	0.03 KiB
Code-based	Very fast	0.5 ms	Very large	360 KiB
NTRU	Very fast	$0.3-1.2 \mathrm{~ms}$	Medium	1 KiB
Ring-LWE	Very fast	$0.2-1.5 \mathrm{~ms}$	Medium	$2-4 \mathrm{KiB}$
LWE	Fast	1.4 ms	Large	11 KiB
SIDH	Med.-slow	$15-400 \mathrm{~ms}$	Small	0.5 KiB

Other applications of LWE

Fully homomorphic encryption from LWE

- KeyGen ()$: \mathbf{s} \stackrel{\$}{\leftarrow} \chi\left(\mathbb{Z}_{q}^{n}\right)$
- $\operatorname{Enc}\left(s k, \mu \in \mathbb{Z}_{2}\right)$: Pick $\mathbf{c} \in \mathbb{Z}_{q}^{n}$ such that $\langle\mathbf{s}, \mathbf{c}\rangle=e \bmod q$ where $e \in \mathbb{Z}$ satisfies $e \equiv \mu \bmod 2$.
- $\operatorname{Dec}(s k, \mathbf{c}):$ Compute $\langle\mathbf{s}, \mathbf{c}\rangle \in \mathbb{Z}_{q}$, represent this as $e \in \mathbb{Z} \cap\left[-\frac{q}{2}, \frac{q}{2}\right)$. Return $\mu^{\prime} \leftarrow e \bmod 2$.

Fully homomorphic encryption from LWE

$\mathbf{c}_{1}+\mathbf{c}_{2}$ encrypts $\mu_{1}+\mu_{2}:$

$$
\left\langle\mathbf{s}, \mathbf{c}_{1}+\mathbf{c}_{2}\right\rangle=\left\langle\mathbf{s}, \mathbf{c}_{1}\right\rangle+\left\langle\mathbf{s}, \mathbf{c}_{2}\right\rangle=e_{1}+e_{2} \bmod q
$$

Decryption will work as long as the error $e_{1}+e_{2}$ remains below $q / 2$.

Fully homomorphic encryption from LWE

Let $\mathbf{c}_{1} \otimes \mathbf{c}_{2}=\left(c_{1, i} \cdot c_{2, j}\right)_{i, j} \in \mathbb{Z}_{q}^{n^{2}}$ be the tensor product (or Kronecker product).
$\mathbf{c}_{1} \otimes \mathbf{c}_{2}$ is the encryption of $\mu_{1} \mu_{2}$ under secret key $\mathbf{s} \otimes \mathbf{s}$:

$$
\left\langle\mathbf{s} \otimes \mathbf{s}, \mathbf{c}_{1} \otimes \mathbf{c}_{2}\right\rangle=\left\langle\mathbf{s}, \mathbf{c}_{1}\right\rangle \cdot\left\langle\mathbf{s}, \mathbf{c}_{2}\right\rangle=e_{1} \cdot e_{2} \bmod q
$$

Decryption will work as long as the error $e_{1} \cdot e_{2}$ remains below $q / 2$.

Fully homomorphic encryption from LWE

- Error conditions mean that the number of additions and multiplications is limited.
- Multiplication increases the dimension (exponentially), so the number of multiplications is again limited.
- There are techniques to resolve both of these issues.
- Key switching allows converting the dimension of a ciphertext.
- Modulus switching and bootstrapping are used to deal with the error rate.

Digital signatures [Lyubashevsky 2011]

- KeyGen(): $\mathbf{S} \stackrel{\$}{\leftarrow}\{-d, \ldots, 0, \ldots, d\}^{m \times k}, A \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{n \times m}, \mathbf{T} \leftarrow \mathbf{A S}$. Secret key: S; public key: (\mathbf{A}, \mathbf{T}).
- $\operatorname{Sign}(\mathbf{S}, \mu): \mathbf{y} \stackrel{\$}{\leftarrow} \chi^{m}: \mathbf{c} \leftarrow H(\mathbf{A y}, \mu) ; \mathbf{z} \leftarrow \mathbf{S c}+\mathbf{y}$. With prob. $p(\mathbf{z})$ output (\mathbf{z}, \mathbf{c}), else restart Sign. "Rejection sampling"
- $\operatorname{Vfy}((\mathbf{A}, \mathbf{T}), \mu,(\mathbf{z}, \mathbf{c}))$: Accept iff $\|\mathbf{z}\| \leq \eta \sigma \sqrt{m}$ and $\mathbf{c}=H(\mathbf{A z}-\mathbf{T c}, \mu)$

Post-quantum signature sizes

	Public key		Signature	
RSA 3072-bit	Small	0.3 KiB	Small	0.3 KiB
ECDSA nistp256	Very small	0.03 KiB	Very small	0.03 KiB
Hash-based (stateful)	Small	0.9 KiB	Medium	3.6 KiB
Hash-based (stateless)	Small	1 KiB	Large	32 KiB
Lattice-based (ignoring tightness)	Medium	$1.5-8 \mathrm{KiB}$	Medium	$3-9 \mathrm{KiB}$
Lattice-based (respecting tightness)	Very large	1330 KiB	Small	1.2 KiB
SIDH	Small	$0.3-0.75$ KiB	Very large	$120-138$ KiB

Summary

Summary

- LWE and ring-LWE problems
- Search, decision, short secrets
- Reduction from GapSVP to LWE
- Public key encryption from LWE
- Regev
- Lindner-Peikert
- Key exchange from LWE / ring-LWE
- Other applications of LWE

More reading

- Post-Quantum Cryptography by Bernstein, Buchmann, Dahmen
- A Decade of Lattice Cryptography by Chris Peikert https://web.eecs.umich.edu/~cpeikert/pubs/lattice-survey.pdf

[^0]: - or ...

