Preparing for post-quantum and hybrid cryptography on the Internet

Funding acknowledgements:

University of Kent • Workshop on Quantum CyberSecurity • June 22, 2017

Motivation

C

🔿 👔 🗅. 🐵 🖞

QCS 2017 Workshop on Quantum CyberSecurity 22 – 23 June, 2017, Canterbury, UK

Banner photography © Mark Wheadon

Program

Thursday 22 June

09:00 – 10:00 Registration, Tea and Coffee

C

Hide details

 First Visited:
 No previous visits recorded

 Certificate:
 www.ce.kent.ac.uk
 (quovadis Limited)

 Connection:
 TLS 1.0 AES_128_CBC HMAC-SHA1 RSA

QCS 2017 Workshop on Quantum CyberSecurity 22 – 23 June, 2017, Canterbury, UK

Banner photography © Mark Wheadon

Program

Thursday 22 June

09:00 – 10:00 Registration, Tea and Coffee

__I↑_I

D. AP

https://www.cs.kent.ac.uk/events/2017/qcs2017/program.html

🔿 👩 🗅. 🐵 🗅

С

Hide details

Banner photography © Mark Wheadon

Program

Thursday 22 June

09:00 - 10:00 Registration, Tea and Coffee

Contemporary cryptography TLS 1.0 AES_128_CBC HMAC-SHA1 RSA

Contemporary cryptography TLS 1.2 AES_128_GCM HMAC-SHA256 RSA + ECDH

Authenticated key exchange + symmetric encyrption

Contemporary cryptography TLS 1.2 AES_128_GCM HMAC-SHA256 RSA + ECDH

When will a large-scale quantum computer be built?

Devoret, Schoelkopf. Science 339:1169–1174, March 2013.

When will a large-scale quantum computer be built?

Devoret, Schoelkopf. Science 339:1169–1174, March 2013.

When will a large-scale quantum computer be built?

"I estimate a 1/7 chance of breaking RSA-2048 by 2026 and a 1/2 chance by 2031."

> — Michele Mosca, November 2015 https://eprint.iacr.org/2015/1075

Post-quantum cryptography in academia

Conference series

- PQCrypto 2006
- PQCrypto 2008
- PQCrypto 2010
- PQCrypto 2011
- PQCrypto 2013
- PQCrypto 2014
- PQCrypto 2016
- PQCrypto 2017

Post-quantum cryptography in government

"IAD will initiate a transition to quantum resistant algorithms in the not too distant future."

> – NSA Information Assurance Directorate, Aug. 2015

NISTIR 8105

Report on Post-Quantum Cryptography

Lily Chen Stephen Jordan Yi-Kai Liu Dustin Moody Rene Peralta Ray Perlner Daniel Smith-Tone

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.IR.8105

Aug. 2015 (Jan. 2016)

Apr. 2016

NIST Post-quantum Crypto Project timeline http://www.nist.gov/pqcrypto

December 2016	Formal call for proposals
November 2017	Deadline for submissions
3-5 years	Analysis phase
2 years later (2023-2025)	Draft standards ready

"Our intention is to select a couple of options for more immediate standardization, as well as to eliminate some submissions as unsuitable.

... The goal of the process is **not primarily to pick a winner**, but to document the strengths and weaknesses of the different options, and to analyze the possible tradeoffs among them."

Timeline

Post-quantum crypto

Post-quantum crypto

Classical crypto with no known exponential quantum speedup

Quantum-safe crypto

Post-quantum crypto research agenda

Design better post-quantum schemes

Improve classical and quantum attacks

Pick parameter sizes

Develop fast, secure implementations

Integrate them into the existing infrastructure

This talk

- Frodo
 - Key exchange protocol from the learning with errors problem
- Open Quantum Safe project
 - A library for comparing post-quantum primitives
 - Framework for easing integration into applications like OpenSSL
- Hybrid key exchange and digital signatures
 - In TLS
 - In X.509v3, S/MIME

Learning with errors problems

Solving systems of linear equations

Linear system problem: given blue, find red

Solving systems of linear equations

Linear system problem: given blue, find red

+

Learning with errors problem

\mathbb{Z}_{13}						
4	1	11	10			
5	5	9	5			
3	9	0	10			
1	3	3	2			
12	7	3	4			
6	5	11	4			
3	3	5	0			

random

 $r_77 \times 4$

X

Learning with errors problem

Computational LWE problem: given blue, find red

Decision learning with errors problem

Decision LWE problem: given blue, distinguish green from random

Toy example versus real-world example

752 × 8 × 15 bits = **11 KiB**

random

Each row is the cyclic shift of the row above

. . .

 $\overset{\text{random}}{\mathbb{Z}_{13}^{7\times 4}}$

4	1	11	10
3	4	1	11
2	3	4	1
12	2	3	4
9	12	2	3
10	9	12	2
11	10	9	12

Each row is the cyclic shift of the row above

with a special wrapping rule: x wraps to $-x \mod 13$.

. . .

 $random \\ \mathbb{Z}_{13}^{7 \times 4}$

Each row is the cyclic shift of the row above

with a special wrapping rule: x wraps to -x mod 13.

So I only need to tell you the first row.

$$\mathbb{Z}_{13}[x]/\langle x^4+1\rangle$$

$$4 + 1x + 11x^2 + 10x^3$$
 random

 \times
 $6 + 9x + 11x^2 + 11x^3$
 secret

 $+$
 $0 - 1x + 1x^2 + 1x^3$
 small noise

$$= 10 + 5x + 10x^2 + 7x^3$$

Computational ring-LWE problem: given blue, find red

Problems

Hardness of decision LWE

worst-case gap shortest vector problem (GapSVP)

poly-time [Regev05, BLPRS13]

decision LWE

tight [ACPS09]

decision LWE with short secrets

Practice:

- Assume the best way to solve DLWE is to solve LWE.
- Assume solving LWE involves a lattice reduction problem.
- Estimate parameters based on runtime of lattice reduction algorithms.
- (Ignore non-tightness.)

Key agreement from LWE

Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila. Frodo: Take off the ring! Practical, quantum-safe key exchange from LWE. *ACM Conference on Computer and Communications Security (CCS) 2016.*

https://eprint.iacr.org/2016/659

Basic LWE-DH key agreement (unauthenticated)

Based on Lindner–Peikert LWE public key encryption scheme

Parameters

"Recommended"

- 144-bit classical security, 130-bit quantum security, 103-bit plausible lower bound
- $n = 752, m = 8, q = 2^{15}$
- χ = approximation to rounded Gaussian with 11 elements
- Failure: 2^{-38.9}
- Total communication: 22.6 KiB

"Paranoid"

 177-bit classical security, 161-bit quantum security, 128-bit plausible lower bound

•
$$n = 864, m = 8, q = 2^{15}$$

- χ = approximation to rounded Gaussian with 13 elements
- Failure: 2^{-33.8}
- Total communication: 25.9 KiB

LWE and ring-LWE public key encryption and key exchange

Regev STOC 2005

Public key encryption from LWE

Lyubashevsky, Peikert, Regev

Eurocrypt 2010

Public key encryption from ring-LWE

Lindner, Peikert

ePrint 2010, CT-RSA 2011

- Public key encryption from LWE and ring-LWE
- Approximate key exchange from LWE

Ding, Xie, Lin ePrint 2012

Key exchange from LWE and ring-LWE with single-bit reconciliation

Peikert

PQCrypto 2014

 Key encapsulation mechanism based on ring-LWE and variant single-bit reconciliation

Bos, Costello, Naehrig, Stebila IEEE S&P 2015

 Implementation of Peikert's ring-LWE key exchange, testing in TLS 1.2

"NewHope"

Alkim, Ducas, Pöppelman, Schwabe. USENIX Security 2016

- New parameters
- Different error distribution
- Improved performance
- Pseudorandomly generated parameters
- Further performance improvements by others [GS16,LN16,AOPPS17,...]

Google Security Blog

Experimenting with Post-Quantum Cryptography

July 7, 2016

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

752 × 8 × 15 bits = **11 KiB**

Why consider (slower, bigger) LWE?

Generic vs. ideal lattices

- Ring-LWE matrices have additional structure
 - Relies on hardness of a problem in ideal lattices
- LWE matrices have
 no additional structure
 - Relies on hardness of a problem in generic lattices
- NTRU also relies on a problem in a type of ideal lattices

- Currently, best algorithms for ideal lattice problems are essentially the same as for generic lattices
 - Small constant factor improvement in some cases
 - Very recent quantum polynomial time algorithm for Ideal-SVP (<u>http://eprint.iacr.org/2016/885</u>) but not immediately applicable to ring-LWE

If we want to eliminate this additional structure, can we still get an efficient protocol?

Implementations

Our implementations

Ring-LWE BCNS15 LWE Frodo

Pure C implementations Constant time

Compare with others

- RSA 3072-bit (OpenSSL 1.0.1f)
 ECDH nistp256 (OpenSSL)
 Use assembly code
- Ring-LWE NewHope
- NTRU EES743EP1
- SIDH (Isogenies) (MSR) Pure C implementations

Post-quantum key exchange performance

	Speed		Communication	
RSA 3072-bit	Fast	4 ms	Small	0.3 KiB
ECDH nistp256	Very fast	0.7 ms	Very small	0.03 KiB
Code-based	Very fast	0.5 ms	Very large	360 KiB
NTRU	Very fast	0.3–1.2 ms	Medium	1 KiB
Ring-LWE	Very fast	0.2–1.5 ms	Medium	2–4 KiB
LWE	Fast	1.4 ms	Large	11 KiB
SIDH	Slow	35–400 ms	Small	0.5 KiB

See [Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila, ACM CCS 2016] for details/methodology

Post-quantum signature sizes

	Public key		Signature	
RSA 3072-bit	Small	0.3 KiB	Small	0.3 KiB
ECDSA nistp256	Very small	0.03 KiB	Very small	0.03 KiB
Hash-based (stateful)	Small	0.9 KiB	Medium	3.6 KiB
Hash-based (stateless)	Small	1 KiB	Large	32 KiB
Lattice-based (ignoring tightness)	Medium	1.5–8 KiB	Medium	3–9 KiB
Lattice-based (respecting tightness)	Very large	1330 KiB	Small	1.2 KiB
SIDH	Small	1.5 KiB	Very large	704 KiB

See [Bindel, Herath, McKague, Stebila PQCrypto 2017] for details

Open Quantum Safe

https://openquantumsafe.org/

Open Quantum Safe

- MIT-licensed open-source project on Github
 - <u>https://openquantumsafe.org/</u>
 - <u>https://github.com/open-quantum-safe/</u>

liboqs: C language library, common API

Open Quantum Safe

1. Collect post-quantum implementations together

- Our own software
- Thin wrappers around existing open source implementations
- Contributions from others
- 2. Enable direct comparison of implementations
- 3. Support prototype integration into application level protocols
 - Don't need to re-do integration for each new primitive how we did Frodo experiments

Open Quantum Safe architecture

liboqs: Current key exchange algorithms

- Ring-LWE:
 - BCNS15
 - NewHope
 - MSR NewHope improvements
- LWE: Frodo
- NTRU
- SIDH (Supersingular isogeny Diffie–Hellman):
 - MSR
 - IQC
- Code: McBits

liboqs: Benchmarking

- Built-in key exchange benchmarking suite
 - •./test_kex --bench
- Gives cycle counts and ms runtimes

liboqs: Application integrations

OpenSSL v1.0.2:

- Ciphersuites using key exchange algorithms from liboqs
- Integrated into openssl speed benchmarking command and s_client and s server command-line programs
- Track OpenSSL 1.0.2 stable with regular updates
 - <u>https://github.com/open-quantum-safe/openssl</u>
- Successfully used in Apache httpd and OpenVPN (with no modifications!)

OQC contributors and acknowledgements

Project leaders

• Michele Mosca and Douglas Stebila

Planning & discussions

- Scott Vanstone and Sherry Shannon Vanstone (Trustpoint)
- Matthew Campagna (Amazon Web Services)
- Alfred Menezes, Ian Goldberg, and Guang Gong (University of Waterloo)
- William Whyte and Zhenfei Zhang (Security Innovation)
- Jennifer Fernick, David Jao, and John Schanck (University of Waterloo)

Software contributors

- Mike Bender
- Tancrède Lepoint (SRI)
- Shravan Mishra (IQC)
- Christian Paquin (MSR)
- Alex Parent (IQC)
- Douglas Stebila (McMaster)
- Sebastian Verschoor (IQC)

+ Existing open-source code

Getting involved and using OQS

https://openquantumsafe.org/

If you're writing post-quantum implementations:

- We'd love to coordinate on API
- And include your software if you agree

If you want to prototype or evaluate post-quantum algorithms in applications:

Maybe OQS will be helpful to you

We'd love help with:

- Code review and static analysis
- Signature scheme implementations
- Additional application-level integrations

Hybrid cryptography

Hybrid TLS: joint work with John Schanck Hybrid signatures: joint work with Nina Bindel, Udyani Herath, Matthew McKague

Retroactive decryption

- A passive adversary that records today's communication can decrypt once they get a quantum computer
 - Not a problem for some people
 - Is a problem for other people

 How to provide potential post-quantum security to early adopters?

Hybrid ciphersuites

- Use pre-quantum and post-quantum algorithms together
- Secure if either one remains unbroken

Need to consider backward compatibility for non-hybridaware systems

Why hybrid?

- Potential post-quantum security for early adopters
- Maintain compliance with older standards (e.g. FIPS)
- Reduce risk from uncertainty on PQ assumptions/parameters

Hybrid ciphersuites

	Key exchange	Digital signature
1	Hybrid traditional + PQ	Single traditional Likely focus for next 10 years
2	Hybrid traditional + PQ	Hybrid traditional + PQ
3	Single PQ	Single traditional
4	Single PQ	Single PQ

TLS connection throughput – hybrid w/ECDHE

x86_64, 2.6 GHz Intel Xeon E5 (Sandy Bridge) – server Google n1-standard-4, client -32 Note somewhat incomparable security levels

Compatibility of large extensions in certs in TLS

	Extension size in KiB				
	1.5	3.5	9.0	43.0	1333.0
Libraries (library's command-line clier	nt talking	to library	's comman	d-line serv	ver
GnuTLS 3.5.11	\checkmark	\checkmark	\checkmark	\checkmark	×
Java SE 1.8.0_131	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
mbedTLS 2.4.2	\checkmark	\checkmark	\checkmark	×	×
NSS 3.29.1	\checkmark	\checkmark	\checkmark	\checkmark	×
OpenSSL 1.0.2k	\checkmark	\checkmark	\checkmark	\checkmark	×
Web browsers (talking to OpenSSL's	command	-line serve	er)		
Apple Safari 10.1 (12603.1.30.0.34)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Google Chrome 58.0.3029.81	\checkmark	\checkmark	\checkmark	\checkmark	×
Microsoft Edge 38.14393.1066.0	\checkmark	\checkmark	\checkmark	×	×
Microsoft IE 11.1066.14393.0	\checkmark	\checkmark	\checkmark	×	×
Mozilla Firefox 53.0	\checkmark	\checkmark	\checkmark	\checkmark	×
Opera 44.0.2510.1218	\checkmark	\checkmark	\checkmark	\checkmark	×

[Bindel, Herath, McKague, Stebila, PQCrypto 2017]

Preparing for post-quantum and hybrid cryptography on the Internet

- Learning with Errors (LWE) can achieve reasonable key sizes and runtime with more conservative assumption
- Open Quantum Safe project allows for prototyping and comparison on post-quantum algorithms
- Hybrid cryptography will probably play a role in the transition

LWE key exchange (Frodo)

- https://github.com/lwe-frodo
- https://eprint.iacr.org/2016/659

Douglas Stebila McMaster

Open Quantum Safe

- https://openquantumsafe.org/
- https://eprint.iacr.org/2016/1017

Hybrid PKI

https://eprint.iacr.org/2017/460