Post-quantum key exchange for the Internet

Douglas Stebila McMaster University w

https://eprint.iacr.org/2016/1017

McMaster Mathematics \& Statistics • November 18, 2016

Acknowledgements

Collaborators

- Joppe Bos
- Craig Costello and Michael Naehrig
- Léo Ducas
- Ilya Mironov and

Ananth Raghunathan

- Michele Mosca
- Valeria Nikolaenko

University

Support

- Australian Research Council (ARC)
- Natural Sciences and Engineering Research Council of Canada (NSERC)
- Queensland University of Technology
- Tutte Institute for Mathematics and Computing

Background and motivation

Encryption

Symmetric encryption

Symmetric encryption

Idea \#1: Confusion

A	\mathbf{T}	\mathbf{T}	\mathbf{A}	\mathbf{C}	\mathbf{K}	\mathbf{A}	\mathbf{T}	\mathbf{D}	\mathbf{A}	\mathbf{W}	\mathbf{N}
\downarrow											
\mathbf{D}	\mathbf{W}	\mathbf{W}	\mathbf{D}	\mathbf{F}	\mathbf{N}	\mathbf{D}	\mathbf{W}	\mathbf{G}	\mathbf{D}	\mathbf{Z}	\mathbf{Q}

- $\mathrm{A}+3$ letters = D
- "Caesar cipher"
- Key: permutation on alphabet

Idea \#2: Diffusion

- Diffusion window: 3 spots
- Key: permutation on columns

Symmetric encryption

- Advanced Encryption Standard (AES)
- Repeated rounds of (confusion then diffusion)
- Different alphabet and column permutations derived from a common key
- But how do Alice and Bob establish a shared secret key in the first place?

Key exchange - the Diffie-Hellman protocol

Let G be a cyclic group of prime order q, generated by g.
Candidate groups: $\left(\mathbb{Z}_{p}^{*}, \times\right)$, points on elliptic curve $\left(E / \mathbb{F}_{p},+\right)$

$$
\begin{array}{lll}
x \stackrel{\S}{\leftarrow} \mathbb{Z}_{q} & & y \stackrel{\&}{\leftarrow} \mathbb{Z}_{q} \\
X \leftarrow g^{x} & Y \leftarrow g^{y} \\
& \\
\hline \frac{Y}{\leftrightarrows}
\end{array}
$$

$$
k_{A} \leftarrow Y^{x}=g^{x y}
$$

$$
k_{B} \leftarrow X^{y}=g^{x y}
$$

Key exchange + symmetric encryption

Man-in-the-middle attack

Man-in-the-middle attack

Digital signatures

- The signer creates a pair of related keys
- Signing key sk - kept private
- Verification key vk - distributed publicly
- Anyone with a copy of the verification key should be able to check if a signature is valid
- Only the person with the signing key should be able to generate valid signatures

RSA digital signatures

Key generation

1. Pick random primes p and q
2. Compute $n=p q$ and $\varphi(n)=(p-1)(q-1)$
3. Let $e=3$
4. Compute $d=e^{-1} \bmod \varphi(n)$

- Signing key: $\quad s k=(n, d)$
- Verification key: $\quad v k=(n, e)$

RSA digital signatures

Sign message $m \in \mathbb{Z}_{n}$ using $s k=(n, d)$.

1. Compute $\sigma \leftarrow m^{d} \bmod n$

Verify message (m, σ) using $v k=(n, e)$.

1. Check if $\sigma^{e} \equiv m \bmod n$.

Why does verification work?

$$
\begin{aligned}
& \sigma^{e} \equiv\left(m^{d}\right)^{e} \equiv m^{e d} \equiv m^{1} \bmod n \\
& \text { since } e d \equiv 1 \bmod \varphi(n)
\end{aligned}
$$

Authenticated key exchange + symmetric encyrption

ה News

Researcher turning dance therapy into video game for seniors
\rightarrow Share -
2. Social
@McMasterU study tries to unlock piece of life's origins on earthow.ly/opJX306a2rm .

- @McMasterU • Nov. 15

- Valid Certificate

The connection to this site is using a valid, trusted server certificate.
View certificate
 cipher (AES_128_GCM).

- Secure Resources

All resources on this page are served securely.

Why is this secure?

1. If AES symmetric encryption/decryption is secure, and no one else knows Alice and Bob's shared key, then their message is confidential.
2. If Diffie-Hellman key exchange is secure, and no one carried out a man-in-the-middle attack, then no one else knows Alice and Bob's shared key.
3. If RSA digital signatures are secure, and Alice and Bob have copies of each other's verification key, then they can confirm no one carried out a man-in-middle attack.

Reductionist security

- Relate the security of breaking the cryptosystem to the difficulty of solving some mathematical problem.

Factoring problem:

1. Pick two large random equal length primes p and q.
2. Compute $n=p q$
3. Given n, find p or q.

Reductionist security

Goal: If factoring is difficutl, then forging RSA digital signatures is hard

Try to prove this using contrapositive:

Given a polynomial time algorithm A for forging RSA digital signatures, then we can use A to construct a polynomial time algorithin B for factoring.

Thm: If factoring is easy, then forging RSA digital signatures is easy.

Currently, the best known method for forging RSA digital signatures is to factor n.

Assume RSA digital signatures are as hard as factoring.

Best known algorithm for factoring takes sub-exponential time.

Reductionist security

Goal: If computing discrete logarithms in G is difficult, then breaking Diffle-Hellman key exchange is hard.

Try to prove this using contrapositive:

Giverna polynomial time algorithm A for breaking Diffie-Hellman key exchange, then wan use A to construct a polynomral time algoritt $\mathrm{m} B$ for discrete logarithms.

Thm: If computing discrete logarithms is easy, then breaking Diffie-Hellman key exchange is easy.

Currently, the best known method for breaking DH key exchange is to computing discrete logarithms.

Assume DH key exchange is as hard as discrete logs.

Best known algorithm for discrete logs takes exponential time.

- Valid Certificate

The connection to this site is using a valid, trusted server certificate.
View certificate
 cipher (AES_128_GCM).

- Secure Resources

All resources on this page are served securely.

Contemporary cryptography

TLS-ECDHE-RSA-AES128-GCM-SHA256

When will a large-scale quantum computer be built?

"I estimate a $1 / 7$ chance of breaking RSA-2048 by 2026 and a $1 / 2$ chance by 2031."

— Michele Mosca, November 2015 https://eprint.iacr.org/2015/1075

Post-quantum cryptography in government

"IAD will initiate a transition to quantum resistant algorithms in the not too distant future."

> - NSA Information Assurance Directorate,
> Aug. 2015

Apr. 2016

NIST Post-quantum Crypto Project timeline

September 2016	Feedback on call for proposals
Fall 2016	Formal call for proposals
November 2017	Deadline for submissions
Early 2018	Workshop - submitters' presentations
$\mathbf{3 - 5}$ years	Analysis phase
2 years later	Draft standards ready

Post-quantum / quantum-safe crypto

No known exponential quantum speedup

Lots of questions

Design better post-quantum key exchange and signature schemes

Improve classical and quantum attacks

Pick parameter sizes

Develop fast, secure implementations

Integrate them into the existing infrastructure

This talk

- Two key exchange protocols from lattice-based problems
- BCNS15: key exchange from the ring learning with errors problem
- Frodo: key exchange from the learning with errors problem
- Open Quantum Safe project
- A library for comparing post-quantum primitives
- Framework for easing integration into applications like OpenSSL

Why key exchange?

Premise: large-scale quantum computers don't exist right now, but we want to protect today's communications against tomorrow's adversary.

Authenticated key exchange + symmetric encyrption

Why key exchange?

- AES encryption already quantum resistant
- Signatures still done with traditional primitives (e.g., RSA)
- we only need authentication to be secure now
- benefit: use existing RSA-based public key infrastructure
- Key agreement done with ring-LWE, LWE, ...

Learning with errors problems

Solving systems of linear equations

$\mathbb{Z}_{13}^{7 \times 4}$					=	$\mathbb{Z}_{13}^{7 \times 1}$
4	1	11	10			4
5	5	9	5			8
3	9	0	10			1
1	3	3	2			10
12	7	3	4			4
6	5	11	4			12
3	3	5	0			9

Linear system problem: given blue, find red

Solving systems of linear equations

Linear system problem: given blue, find red

Learning with errors problem

$\begin{aligned} & \text { random } \\ & \mathbb{Z}_{13}^{7 \times 4} \end{aligned}$			
4	1	11	10
5	5	9	5
3	9	0	10
1	3	3	2
12	7	3	4
6	5	11	4
3	3	5	0

secret
$\mathbb{Z}_{13}^{4 \times 1}$

6
9
11
11

small noise
$\mathbb{Z}_{13}^{7 \times 1}$
$\mathbb{Z}_{13}^{7 \times 1}$

0
-1
1
1
1
0
-1
:---:
7
2
11
5
12
8

Learning with errors problem

random \mathbb{Z} 13			
4 1 11 10 5 5 9 5 3 9 0 10 1 3 3 2 12 7 3 4 6 5 11 4 3 3 5 0			

secret
$\mathbb{Z}_{13}^{4 \times 1}$

small noise
$\mathbb{Z}_{13}^{7 \times 1}$
$\mathbb{Z}_{13}^{7 \times 1}$

:---:
11

Computational LWE problem: given blue, find red

Decision learning with errors problem

random $\mathbb{Z}_{13}^{7 \times 4}$			
4	1	11	10
5	5	9	5
3	9	0	10
1	3	3	2
12	7	3	4
6	5	11	4
3	3	5	0

secret
$\mathbb{Z}_{13}^{4 \times 1}$

small noise
$\mathbb{Z}_{13}^{7 \times 1}$
looks random
$\mathbb{Z}_{13}^{7 \times 1}$

4
7
2
11
5
12
8

Decision LWE problem: given blue, distinguish green from random

Toy example versus real-world example

$\mathbb{Z}_{13}^{7 \times 4}$			
4	1	11	10
5	5	9	5
3	9	0	10
1	3	3	2
12	7	3	4
6	5	11	4
3	3	5	0

Ring learning with errors problem

random

7×4
\mathbb{Z}_{13}

4	1	11	10
10	4	1	11
11	10	4	1
1	11	10	4
4	1	11	10
10	4	1	11
11	10	4	1

Each row is the cyclic shift of the row above

Ring learning with errors problem

random
7×4
\mathbb{Z}_{13}

4	1	11	10
3	4	1	11
2	3	4	1
12	2	3	4
9	12	2	3
10	9	12	2
11	10	9	12

Each row is the cyclic shift of the row above
with a special wrapping rule: x wraps to $-x$ mod 13.

Ring learning with errors problem

random

7×4
\mathbb{Z}_{13}

| 4 | 1 | 11 | 10 | Each row is the cyclic |
| :--- | :--- | :--- | :--- | :--- | shift of the row above

with a special wrapping rule:
x wraps to $-x$ mod 13 .

So I only need to tell you the first row.

Ring learning with errors problem

$$
\begin{array}{l|ll}
& & \begin{array}{l}
\mathbb{Z}_{13}[x] /\left\langle x^{4}+1\right\rangle \\
\\
\times
\end{array} \\
\times+1 x+11 x^{2}+10 x^{3} & \text { random } \\
+ & 0-1 x+11 x^{2}+11 x^{3} & \text { secret }
\end{array}
$$

Ring learning with errors problem

Computational ring-LWE problem: given blue, find red

Decision ring learning with errors problem

$$
\mathbb{Z}_{13}[x] /\left\langle x^{4}+1\right\rangle
$$

$$
4+1 x+11 x^{2}+10 x^{3} \quad \text { random }
$$

$=10+5 x+10 x^{2}+7 x^{3} \quad$ looks random

Decision ring-LWE problem: given blue, distinguish green from random

Decision ring learning with errors problem with small secrets

$$
\mathbb{Z}_{13}[x] /\left\langle x^{4}+1\right\rangle
$$

Decision ring-LWE problem: given blue, distinguish green from random

Problems

Computational
 LWE problem

Decision
 LWE problem

with or without short secrets

Computational ring-LWE problem

Decision ring-LWE problem

Key agreement from ring-LWE

Bos, Costello, Naehrig, Stebila.
Post-quantum key exchange for the TLS protocol from the ring learning with errors problem. IEEE Symposium on Security \& Privacy (S\&P) 2015.
https://www.douglas.stebila.ca/research/papers/SP-BCNS15/

Decision ring learning with errors problem with short secrets

Definition. Let n be a power of $2, q$ be a prime, and $R_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$ be the ring of polynomials in X with integer coefficients modulo q and polynomial reduction modulo $X^{n}+1$. Let χ be a distribution over R_{q}.
Let $s \stackrel{\$}{\leftarrow} \chi$.
Define:

- $O_{\chi, s}$: Sample $a \stackrel{\$}{\leftarrow} \mathcal{U}\left(R_{q}\right), e \stackrel{\$}{\leftarrow} \chi ;$ return $(a, a s+e)$.
- U : Sample $\left(a, b^{\prime}\right) \stackrel{\$}{\leftarrow} \mathcal{U}\left(R_{q} \times R_{q}\right) ;$ return $\left(a, b^{\prime}\right)$.

The decision $R-L W E$ problem with short secrets for n, q, χ is to distinguish $O_{\chi, s}$ from U.

Hardness of decision ring-LWE

Lattices

Let $\mathbf{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\} \subseteq \mathbb{Z}_{q}^{n \times n}$ be a set of linearly independent basis vectors for \mathbb{Z}_{q}^{n}. Define the corresponding lattice

$$
\mathcal{L}=\mathcal{L}(\mathbf{B})=\left\{\sum_{i=1}^{n} z_{i} \mathbf{b}_{i}: z_{i} \in \mathbb{Z}\right\} .
$$

(In other words, a lattice is a set of integer linear combinations.)
Define the minimum distance of a lattice as

$$
\lambda_{1}(\mathcal{L})=\min _{\mathbf{v} \in \mathcal{L} \backslash\{0\}}\|\mathbf{v}\| .
$$

Shortest vector problem

The shortest vector problem (SVP) is: given a basis \mathbf{B} for some lattice $\mathcal{L}=$ $\mathcal{L}(\mathbf{B})$, find a shortest non-zero vector, i.e., find $\mathbf{v} \in \mathcal{L}$ such that $\|\mathbf{v}\|=\lambda_{1}(\mathcal{L})$.

The decision approximate shortest vector problem $\left(\operatorname{GapSVP}_{\gamma}\right)$ is: given a basis B for some lattice $\mathcal{L}=\mathcal{L}(\mathbf{B})$ where either $\lambda_{1}(\mathcal{L}) \leq 1$ or $\lambda_{1}(\mathcal{L})>\gamma$, determine which is the case.

Shortest vector problem

- Can solve GapSVP_{γ} using lattice reduction algorithm like LLL
- Runtime depends on approximation factor gamma
- No known classical or quantum algorithm can get polynomial approximation factor in polynomial runtime

Hardness of decision ring-LWE

- GapSVP parameter gamma depends on LWE parameters n, q, and error distribution χ
- Estimate parameters based on runtime of lattice reduction algorithms e.g. [APS15]
- (Ignore non-tightness.) [CKMS16]

Basic ring-LWE-DH key agreement (unauthenticated)

Based on Lindner-Peikert ring-LWE public key encryption scheme

Rounding

- Each coefficient of the polynomial is an integer modulo q
- Treat each coefficient independently

Basic rounding

- Round either to 0 or $q / 2$
- Treat q/2 as 1

This works most of the time: prob. failure 2^{-10}.

Not good enough: we need exact key agreement.

Better rounding

Bob says which of two regions the value is in: \square or

Better rounding

- If \mid alice - bob $\mid \leq q / 8$, then this always works.

- For our parameters, probability | alice -bob |>q/8 is less than 2-128000.
- Security not affected: revealing or leaks no information

Exact ring-LWE-DH key agreement (unauthenticated)

Based on Lindner-Peikert ring-LWE public key encryption scheme
public: uniform a in $R_{q}=\mathbf{Z}_{q}[x] /\left(x^{n}+1\right)$

Alice
secret: secret:
random "small" s, e in R_{q}

$$
b=a \cdot s+e
$$

shared secret:
round ($s \cdot b^{\prime}$)

$$
b^{\prime}=a \cdot s^{\prime}+e^{\prime}, \quad \text { or } \boldsymbol{J}^{\prime \prime}
$$

Bob
random "small" s', e' in R_{q}

Thm: Key exchange is secure if decision ring learning with errors problem is hard.

Parameters

160-bit classical security, 80-bit quantum security

- $n=1024$
- $q=2^{32}-1$
- $\chi=$ discrete Gaussian with parameter sigma $=8 /$ sqrt(2π)
- Failure: 2^{-12800}
- Total communication: 8.1 KiB

Implementation aspect 1:

Polynomial arithmetic

- Polynomial multiplication in $R_{q}=\mathbf{Z}_{q}[x] /\left(x^{1024}+1\right)$ done with Nussbaumer's FFT:

If $2^{m}=r k$, then

$$
\frac{R[X]}{\left\langle X^{2 m}+1\right\rangle} \cong \frac{\left(\frac{R[Z]}{\left\langle Z^{r}+1\right\rangle}\right)[X]}{\left\langle X^{k}-Z\right\rangle}
$$

- Rather than working modulo degree-1024 polynomial with coefficients in \mathbf{Z}_{q}, work modulo:
- degree-256 polynomial whose coefficients are themselves polynomials modulo a degree-4 polynomial,
- or degree-32 polynomials whose coefficients are polynomials modulo degree-8 polynomials whose coefficients are polynomials

[^0]Implementation aspect 2:

Sampling discrete Gaussians

- Security proofs require "small" elements sampled within statistical distance 2^{-128} of the true discrete Gaussian
- We use inversion sampling: precompute table of cumulative probabilities
- Choosing a good distribution and sampling efficiently is a challenge

Key agreement from LWE

Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila. Frodo: Take off the ring! Practical, quantum-safe key exchange from LWE. ACM Conference on Computer and Communications Security (CCS) 2016.
https://eprint.iacr.org/2016/659

Ring-LWE

Cyclic structure
\Rightarrow Save communication, more efficient computation

4 KiB representation

LWE

$$
640 \times 256 \times 12 \text { bits }=245 \mathrm{KiB}
$$

Ring-LWE

Cyclic structure
\Rightarrow Save communication, more efficient computation

4 KiB representation

LWE

$752 \times 8 \times 15$ bits $=11 \mathrm{KiB}$

Why consider (slower, bigger) LWE?

Generic vs. ideal lattices

- Ring-LWE matrices have additional structure
- Relies on hardness of a problem in ideal lattices
- LWE matrices have no additional structure
- Relies on hardness of a problem in generic lattices
- Currently, best algorithms for ideal lattice problems are essentially the same as for generic lattices
- Small constant factor improvement in some cases
- Very recent quantum polynomial time algorithm for Ideal-SVP (http://eprint.iacr.org/2016/885) but not immediately applicable to ringLWE

Exact LWE-DH key agreement (unauthenticated)

Based on Lindner-Peikert LWE public key encryption scheme

$$
\text { public: uniform } \mathbf{A} \in \mathbb{Z}_{q}^{n \times n}
$$

Thm: Key exchange is secure if decision learning with errors problem is hard.

Performance

Implementations

Our implementations
-Ring-LWE BCNS15

- LWE Frodo

Pure C implementations
Constant time

Compare with others

- RSA 3072-bit (OpenSSL 1.0.1f)
- ECDH nistp256 (OpenSSL)

Use assembly code

- Ring-LWE NewHope
- NTRU EES743EP1
- SIDH (Isogenies) (MSR)

Pure C implementations

Standalone performance

	Speed		Communication		Quantum Security
RSA 3072-bit	Fast	4 ms	Small	0.3 KiB	
ECDH nistp256	Very fast	0.7 ms	Very small	0.03 KiB	
Ring-LWE BCNS	Fast	1.5 ms	Medium	4 KiB	80 -bit
Ring-LWE NewHope	Very fast	0.2 ms	Medium	2 KiB	206 -bit
NTRU EES743EP1	Fast	$0.3-1.2 \mathrm{~ms}$	Medium	1 KiB	128 -bit
SIDH	Very slow	$35-400 \mathrm{~ms}$	Small	0.5 KiB	128 -bit
LWE Frodo Recom.	Fast	1.4 ms	Large	11 KiB	130 -bit
MCBits*	Very fast	0.5 ms	Very large	360 KiB	161 -bit

TLS handshake latency compared to RSA sig + ECDH nistp256

smaller (left) is better

TLS connection throughput ECDSA signatures

bigger (top) is better

Open Quantum Safe

- Open source C library
- Common interface for key exchange and digital signatures

1. Collect post-quantum implementations together

- Our own software
- Thin wrappers around existing open source implementations
- Contributions from others

2. Enable direct comparison of implementations
3. Support prototype integration into application level protocols

- Don't need to re-do integration for each new primitive - how we did Frodo experiments

Summary

Post-quantum key exchange for the Internet

- Lots of fun math in public key cryptography
- Number theory
- Groups, rings
- Lattices
- Elliptic curves
- Learning with errors problem
- Difficulty based on lattice problem
- Ring variant for smaller communication
- Building key exchange from LWE
- Ring-LWE is fast and fairly small
- LWE can achieve reasonable key sizes and runtime with more conservative assumption

Ring-LWE key exchange

- https://eprint.iacr.org/2014/599

LWE key exchange

- https://eprint.iacr.org/2016/659

Open Quantum Safe

- https://openquantumsafe.org/
- https://eprint.iacr.org/2016/1017
"Thank God number theory is unsullied by any application."
— Leonard Dickson (1874-1954)

Appendix

More on LWE and ring-LWE key exchange

Lyubashevsky, Peikert, Regev

 Eurocrypt 2010- Public key encryption from ring-LWE

Lindner, Peikert
ePrint 2010, CT-RSA 2011

- Public key encryption from LWE and ring-LWE
- Key exchange from LWE

Ding, Xie, Lin

ePrint 2012

- Key exchange from LWE and ring-LWE

Peikert

PQCrypto 2014

- Key encapsulation mechanism based on ringLWE

Ring-LWE-DH key agreement

Public parameters

Decision R-LWE parameters q, n, χ
$a \stackrel{\S}{\leftarrow} \mathcal{U}\left(R_{q}\right)$

Alice	Bob	
$s, e \stackrel{\&}{\leftarrow} \chi$	\xrightarrow{b}	$s^{\prime}, e^{\prime} \stackrel{\&}{\leftarrow} \chi$
$b \leftarrow a s+e \notin R_{q}$		b^{\prime}
$\left.k_{A} \leftarrow \operatorname{rec} 2 b^{\prime} s c\right) \in\{0,1\}^{n}$		

Secure if

 decision ring learning with errors problem is hard.
Sampling is expensive

Operation

Cycles

constant-time non-constant-time

	1042700	668000
sample $\stackrel{\&}{\leftarrow} \chi$	342800	-
FFT multiplication	1660	-
FFT addition	23500	21300
dbl (\cdot) and crossrounding $\langle\cdot\rangle_{2 q, 2}$	5500	3,700
rounding $\langle\cdot\rangle_{2 q, 2}$	14400	6800
reconciliation rec (\cdot, \cdot)		

"NewHope"

Alkim, Ducas, Pöppelman, Schwabe. USENIX Security 2016

- New parameters
- Different error distribution
- Improved performance
- Pseudorandomly generated parameters
- Further performance improvements by others [GS16,LN16,...]

Google Security Blog

Experimenting with Post-Quantum Cryptography July 7, 2016

Main Origin

- https://play.google.com Secure Origins
- https://www.gstatic.com
- https://lh3.googleuserconti
https://h4.googleuserconte
- https://h55.googleuserconte
https://lh6.googleuserconte
https:///h3.ggpht.com
- https:///h4.ggpht.com
https://h5.ggpht.com
- https://books.google.com
- https://ajax.googleapis.com
https://www.google.com
- https://www.google-analyti -
- https://play.google.com View requests in Network Pane!

Connection

$$
\begin{array}{ll}
\text { Protocol } & \text { TLS 1.2 } \\
\text { Key Exchange } & \text { CECPQQ1_ECDSA } \\
\text { Cipher Suite } & \text { AES_256_GCM }
\end{array}
$$

Certificate
Subject *.google.com
SAN *.google.com
*.android.com
Show more (52 total)
Valid From Thu, 23 Jun 2016 08:33:56 GMT
Valid Until Thu, 15 Sep 2016 08:31:00 GMT
Issuer Google Internet Authority G2

Decision learning with errors problem with short secrets

Definition. Let $n, q \in \mathbb{N}$. Let χ be a distribution over \mathbb{Z}. Let $\mathbf{s} \stackrel{\$}{\leftarrow} \chi^{n}$.

Define:

- $O_{\chi, \mathbf{s}}$: Sample $\mathbf{a} \stackrel{\$}{\leftarrow} \mathcal{U}\left(\mathbb{Z}_{q}^{n}\right), e \stackrel{\$}{\leftarrow} \chi ;$ return $(\mathbf{a}, \mathbf{a} \cdot \mathbf{s}+e)$.
- U : Sample $\left(\mathbf{a}, b^{\prime}\right) \stackrel{\$}{\leftarrow} \mathcal{U}\left(\mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}\right) ;$ return $\left(\mathbf{a}, b^{\prime}\right)$.

The decision LWE problem with short secrets for n, q, χ is to distinguish $O_{\chi, \mathrm{s}}$ from U.

Hardness of decision LWE

worst-case gap shortest vector problem (GapSVP)
poly-time [BLPRS13]

decision LWE

tight [ACPS09]
decision LWE
with short secrets

Practice:

- Assume the best way to solve DLWE is to solve LWE.
- Assume solving LWE involves a lattice reduction problem.
- Estimate parameters based on runtime of lattice reduction algorithms.
- (Ignore non-tightness.)

"Frodo": LWE-DH key agreement

Based on Lindner-Peikert LWE key agreement scheme

Uses two matrix forms of LWE:

- Public key is $n \times \underline{n}$ matrix
- Shared secret is $\underline{m} \times \underline{n}$ matrix
$\left.K \leftarrow \operatorname{rec} \mathbf{B}^{\prime} \mathbf{S}, \mathbf{C}\right)$

$K \leftarrow\lfloor\mathbf{V}\rceil_{2} B$

Secure if

 decision learning with errors problem is hard
Rounding

Error distribution

- We extract 4 bits from each of the 64 matrix entries in the shared secret.
- More granular form of previous rounding.

Parameter sizes, rounding, and error distribution all found via search scripts.

- Close to discrete Gaussian in terms of Rényi divergence (1.000301)
- Only requires 12 bits of
randomness to sample

Parameters

All known variants of the sieving algorithm require a list of vectors to be created of this size

"Recommended"

- 144-bit classical security, 130-bit quantum security, 103-bit plausible lower bound
- $n=752, m=8, q=2^{15}$
- $\chi=$ approximation to rounded Gaussian with 11 elements
- Failure: 2-38.9
- Total communication: 22.6 KiB

"Paranoid"

- 177-bit classical security, 161-bit quantum security, 128-bit plausible lower bound
- $n=864, m=8, q=2^{15}$
- $\chi=$ approximation to rounded Gaussian with 13 elements
- Failure: $2^{-33.8}$
- Total communication: 25.9 KiB

TLS integration and performance

Integration into TLS 1.2

New ciphersuite:

TLS-KEX-SIG-AES256-GCM-
SHA384

- SIG = RSA or ECDSA signatures for authentication
- KEX = Post-quantum key exchange
- AES-256 in GCM for authenticated encryption
- SHA-384 for HMAC-KDF

ClientHello \qquad
ServerHello
Certificate

Certificate*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]

application data

Security within TLS 1.2

Model:

- authenticated and confidential channel establishment (ACCE) [JKSS12]

Theorem:

- signed LWE/ring-LWE ciphersuite is ACCE-secure if underlying primitives (signatures, LWE/ring-LWE, authenticated encryption) are secure

Interesting provable security detail:

- TLS proofs use active security of unauthenticated key exchange (IND-CCA KEM or PRF-ODH assumption)
- Doesn't hold for basic BCNS15/Frodo/NewHope protocols
- Solution:
- move server's signature to end of TLS handshake OR
- use e.g. Fujisaki-Okamoto transform to convert passive to active security KEM

TLS performance

Handshake latency

-•Time from when client sends first TCP packet till client receives first application data
-•No load on server

Connection throughput

-•Number of connections per second at server before server latency spikes

Hybrid ciphersuites

- Use both post-quantum key exchange and traditional key exchange
- Example:
- ECDHE + NewHope
- Used in Google Chrome experiment
- ECDHE + Frodo
- Session key secure if either problem is hard
-Why use post-quantum?
- (Potential) security against future quantum computer
-Why use ECDHE?
- Security not lost against existing adversaries if post-quantum cryptanalysis advances

TLS connection throughput - hybrid w/ECDHE

 ECDSA signatures
bigger (top) is better

Open Quantum Safe

Collaboration with Mosca et al., University of Waterloo
https://openquantumsafe.org/

Open Quantum Safe architecture

Current status

- liboqs
- ring-LWE key exchange using BCNS15
- ring-LWE key exchange using NewHope*
- LWE key exchange using Frodo
- [alpha] code-based key exchange using Neiderreiter with quasi-cyclic mediumdensity parity check codes
- OpenSSL
- integration into OpenSSL 1.0.2 head

Coming soon

- liboqs
- benchmarking
- key exchange:
- SIDH, NTRU*
- Integrations into other applications
- libotr

OQC contributors and acknowledgements

Project leaders

- Michele Mosca and Douglas Stebila

Planning \& discussions

- Scott Vanstone and Sherry Shannon Vanstone (Trustpoint)
- Matthew Campagna (Amazon Web Services)
- Alfred Menezes, Ian Goldberg, and Guang Gong (University of Waterloo)
- William Whyte and Zhenfei Zhang (Security Innovation)
- Jennifer Fernick, David Jao, and John Schanck (University of Waterloo)

Software contributors

- Mike Bender
- Tancrède Lepoint (SRI)
- Shravan Mishra (IQC)
- Christian Paquin (MSR)
- Alex Parent (IQC)
- Douglas Stebila (McMaster)
- Sebastian Verschoor (IQC)
+ Existing open-source code

[^0]: - or ...

