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Background and motivation
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Internet

Encryption
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Encrypt(m) Decrypt(c)msg msgcipher
text



Internet

Symmetric encryption
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Encrypt(k, m) Decrypt(k, c)cipher
text

msg msg

key key



Symmetric encryption
Idea #1: Confusion

A T T A C K A T D A W N
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
D W W D F N D W G D Z Q

Idea #2: Diffusion

• Diffusion window: 3 spots

• Key: permutation on columns
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• A + 3 letters = D
• "Caesar cipher"
• Key: permutation on alphabet

A T T A
C K A T
D A W N

A C D T K A T A W A T N



Symmetric encryption

• Advanced Encryption Standard (AES)
• Repeated rounds of (confusion then diffusion)
• Different alphabet and column permutations derived from a common key

• But how do Alice and Bob establish a shared secret key in the first place?
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Key exchange – the Diffie–Hellman protocol
Let G be a cyclic group of prime order q, generated by g.
Candidate groups:             , points on elliptic curve
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Internet

Key exchange + symmetric encryption
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Encrypt(k, m) Decrypt(k, c)cipher
text

msg msg

key key

Key established using 
Diffie–Hellman key exchange



Man-in-the-middle attack
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Man-in-the-middle attack
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Digital signatures
• The signer creates a pair of related keys

• Signing key sk – kept private
• Verification key vk – distributed publicly

• Anyone with a copy of the verification key should be able to check if a 
signature is valid

• Only the person with the signing key should be able to generate valid 
signatures
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RSA digital signatures
Key generation
1. Pick random primes p and q
2. Compute                 and  
3. Let 
4. Compute 

• Signing key: 

• Verification key: 
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n = pq '(n) = (p� 1)(q � 1)
e = 3

d = e�1
mod '(n)

sk = (n, d)

vk = (n, e)



RSA digital signatures
Sign message                   using                       .
1. Compute 
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m 2 Zn sk = (n, d)

Verify message               using                       .
1. Check if                               .
(m,�) vk = (n, e)

�  md
mod n

�e ⌘ m mod n

�e ⌘ (md
)

e ⌘ med ⌘ m1
mod n

ed ⌘ 1 mod '(n)since

Why does verification work?



Internet

Authenticated key exchange + symmetric encyrption
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Encrypt(k, m) Decrypt(k, c)cipher
text

msg msg

key key

Key established using 
Diffie–Hellman key exchange

Authenticated using 
RSA digital signatures

skA
vkB

vkA
skB
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Why is this secure?

1. If AES symmetric encryption/decryption is secure, 
and no one else knows Alice and Bob's shared key, 
then their message is confidential.

2. If Diffie–Hellman key exchange is secure, 
and no one carried out a man-in-the-middle attack, 
then no one else knows Alice and Bob's shared key.

3. If RSA digital signatures are secure, 
and Alice and Bob have copies of each other's verification key, 
then they can confirm no one carried out a man-in-middle attack.
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Reductionist security
• Relate the security of breaking 
the cryptosystem to the 
difficulty of solving some 
mathematical problem.

Factoring problem:
1. Pick two large random equal 

length primes p and q.  
2. Compute
3. Given n, find p or q.
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n = pq



Reductionist security
Goal: If factoring is difficult,
then forging RSA digital signatures 
is hard.

Try to prove this using 
contrapositive: 

Given a polynomial time algorithm 
A for forging RSA digital 
signatures, then we can use A to 
construct a polynomial time 
algorithm B for factoring.

Thm: If factoring is easy,
then forging RSA digital signatures 
is easy.

Currently, the best known method 
for forging RSA digital signatures is 
to factor n.

Assume RSA digital signatures are 
as hard as factoring.

Best known algorithm for factoring 
takes sub-exponential time. 
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Reductionist security
Goal: If computing discrete 
logarithms in G is difficult,
then breaking Diffie–Hellman key 
exchange is hard.

Try to prove this using 
contrapositive: 

Given a polynomial time algorithm 
A for breaking Diffie–Hellman key 
exchange, then we can use A to 
construct a polynomial time 
algorithm B for discrete logarithms.

Thm: If computing discrete 
logarithms is easy, then breaking 
Diffie–Hellman key exchange is 
easy.

Currently, the best known method 
for breaking DH key exchange is to 
computing discrete logarithms.

Assume DH key exchange is as 
hard as discrete logs.

Best known algorithm for discrete 
logs takes exponential time.
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Contemporary cryptography
TLS-ECDHE-RSA-AES128-GCM-SHA256

Public-key 
cryptography

RSA signatures

difficulty of 
factoring

Elliptic curve 
Diffie–Hellman
key exchange

difficulty of elliptic 
curve discrete 

logarithms

Symmetric 
cryptography

AES SHA-2

Can be solved efficiently by a 
large-scale quantum computer
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When will a large-scale quantum computer be built?

“I estimate a 1/7 chance of 
breaking RSA-2048 by 2026
and a 1/2 chance by 2031.”

— Michele Mosca, November 2015
https://eprint.iacr.org/2015/1075
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Post-quantum cryptography in government

Aug. 2015 (Jan. 2016)

“IAD will initiate a 
transition to quantum 
resistant algorithms in 
the not too distant 
future.”

– NSA Information 
Assurance Directorate, 

Aug. 2015

Apr. 2016
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NIST Post-quantum Crypto Project timeline

September 2016 Feedback on call for proposals
Fall 2016 Formal call for proposals
November 2017 Deadline for submissions
Early 2018 Workshop – submitters’ presentations
3–5 years Analysis phase
2 years later Draft standards ready

http://www.nist.gov/pqcrypto
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Post-quantum / quantum-safe crypto

Hash-based

• Merkle
signatures

• Sphincs

Code-based

• McEliece

Multivariate 

• multivariate 
quadratic

Lattice-
based

• NTRU
• learning with 

errors
• ring-LWE

Isogenies

• supersingular
elliptic curve 
isogenies

No known exponential quantum speedup
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Lots of questions

Design better post-quantum key exchange and signature schemes

Improve classical and quantum attacks

Pick parameter sizes

Develop fast, secure implementations

Integrate them into the existing infrastructure
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This talk

• Two key exchange protocols from lattice-based problems
• BCNS15: key exchange from the ring learning with errors problem
• Frodo: key exchange from the learning with errors problem

• Open Quantum Safe project
• A library for comparing post-quantum primitives
• Framework for easing integration into applications like OpenSSL
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Why key exchange?

Premise: large-scale quantum computers don’t 
exist right now, but we want to protect today’s 

communications against tomorrow’s adversary.
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skA
vkB

vkA
skB

Internet

Authenticated key exchange + symmetric encyrption
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Encrypt(k, m) Decrypt(k, c)cipher
text

msg msg

key key

Key established using 
Diffie–Hellman key exchange

Authenticated using 
RSA digital signatures

Need quantum-resistant 
symmetric encryption and 

key exchange



Why key exchange?

• AES encryption already quantum resistant

• Signatures still done with traditional primitives (e.g., RSA) 
• we only need authentication to be secure now
• benefit: use existing RSA-based public key infrastructure

• Key agreement done with ring-LWE, LWE, …
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Learning with errors problems
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Solving systems of linear equations

Linear system problem: given blue, find red

Z7⇥4
13

secret
Z7⇥1
13Z4⇥1

13

4 1 11 10
5 5 9 5
3 9 0 10
1 3 3 2

12 7 3 4
6 5 11 4
3 3 5 0

4
8
1

10
4

12
9

× =
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Solving systems of linear equations

Linear system problem: given blue, find red

Z7⇥4
13

secret
Z7⇥1
13Z4⇥1

13

4 1 11 10
5 5 9 5
3 9 0 10
1 3 3 2

12 7 3 4
6 5 11 4
3 3 5 0

4
8
1

10
4

12
9

6
9
11
11

× =

McMaster Math • 2016-11-18 Post-quantum key exchange for the Internet • Stebila 35



Learning with errors problem

Z7⇥4
13

random secret small noise
Z7⇥1
13 Z7⇥1

13Z4⇥1
13

4 1 11 10
5 5 9 5
3 9 0 10
1 3 3 2

12 7 3 4
6 5 11 4
3 3 5 0

4
7
2
11
5

12
8

6
9
11
11

0
-1
1
1
1
0
-1

× + =
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Learning with errors problem

Computational LWE problem: given blue, find red

Z7⇥4
13

random secret small noise
Z7⇥1
13 Z7⇥1

13Z4⇥1
13

4 1 11 10
5 5 9 5
3 9 0 10
1 3 3 2

12 7 3 4
6 5 11 4
3 3 5 0

4
7
2
11
5

12
8

× + =
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Decision learning with errors problem

Decision LWE problem: given blue, distinguish green from random

Z7⇥4
13

random secret small noise looks random
Z7⇥1
13 Z7⇥1

13Z4⇥1
13

4 1 11 10
5 5 9 5
3 9 0 10
1 3 3 2

12 7 3 4
6 5 11 4
3 3 5 0

4
7
2
11
5

12
8

× + =
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Toy example versus real-world example

Z7⇥4
13

4 1 11 10
5 5 9 5
3 9 0 10
1 3 3 2

12 7 3 4
6 5 11 4
3 3 5 0

2738 3842 3345 2979 …
2896 595 3607
377 1575

2760
…

640

256

640 × 256 × 12 bits =   245 KiB

Z640⇥256
4093
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Ring learning with errors problem

Z7⇥4
13

random

4 1 11 10
10 4 1 11
11 10 4 1
1 11 10 4
4 1 11 10

10 4 1 11
11 10 4 1

Each row is the cyclic 
shift of the row above
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Ring learning with errors problem

Z7⇥4
13

random

4 1 11 10
3 4 1 11
2 3 4 1

12 2 3 4
9 12 2 3

10 9 12 2
11 10 9 12

Each row is the cyclic 
shift of the row above
…
with a special wrapping rule:
x wraps to –x mod 13.
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Ring learning with errors problem

Z7⇥4
13

random

4 1 11 10 Each row is the cyclic 
shift of the row above
…
with a special wrapping rule:
x wraps to –x mod 13.

So I only need to tell you the first row.
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Ring learning with errors problem

4 + 1x + 11x2 + 10x3

6 + 9x + 11x2 + 11x3

0 – 1x +   1x2 +   1x3

10 + 5x + 10x2 +   7x3

Z13[x]/hx4 + 1i

random

secret

small noise

×

+

=
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Ring learning with errors problem

4 + 1x + 11x2 + 10x3

10 + 5x + 10x2 +   7x3

Z13[x]/hx4 + 1i

random

secret

small noise

Computational ring-LWE problem: given blue, find red

×

+

=
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Decision ring learning with errors problem

4 + 1x + 11x2 + 10x3

10 + 5x + 10x2 +   7x3

Z13[x]/hx4 + 1i

random

secret

small noise

looks random

Decision ring-LWE problem: given blue, distinguish green from random

×

+

=
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Decision ring learning with errors problem 
with small secrets

4 + 1x + 11x2 + 10x3

1 + 0x – 1x2 +   2x3

10 + 5x + 10x2 +   7x3

Z13[x]/hx4 + 1i

random

small secret

small noise

looks random

×

+

=

Decision ring-LWE problem: given blue, distinguish green from random
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Problems

Computational 
LWE problem

Decision 
LWE problem

Computational
ring-LWE problem

Decision 
ring-LWE problem

with or without 
short secrets
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Key agreement from ring-LWE
Bos, Costello, Naehrig, Stebila. 
Post-quantum key exchange for the TLS protocol from the ring learning with errors problem. 
IEEE Symposium on Security & Privacy (S&P) 2015.  

https://www.douglas.stebila.ca/research/papers/SP-BCNS15/ 
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Decision ring learning with errors problem 
with short secrets
Definition. Let n be a power of 2, q be a prime, and Rq = Zq[X]/(Xn

+1) be

the ring of polynomials in X with integer coe�cients modulo q and polynomial

reduction modulo Xn
+ 1. Let � be a distribution over Rq.

Let s
$ �.

Define:

• O�,s: Sample a
$ U(Rq), e

$ �; return (a, as+ e).

• U : Sample (a, b0)
$ U(Rq ⇥Rq); return (a, b0).

The decision R-LWE problem with short secrets for n, q,�
is to distinguish O�,s from U .
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Hardness of decision ring-LWE
worst-case approximate shortest 
(independent) vector problem 
(SVP/SIVP) on ideal lattices in R

search ring-LWE

decision ring-LWE

decision ring-LWE 
with short secrets

poly-time [LPR10]

poly-time [LPR10]

tight [ACPS09]
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[LPR10] Lyubashevsky, Piekert, Regev. EUROCRYPT 2010.
[ACPS15] Applebaum, Cash, Peikert, Sahai. CRYPTO 2009.
[CKMS16] Chatterjee, Koblitz, Menezes, Sarkar. ePrint 2016/360.



Lattices
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Let B = {b1, . . . ,bn} ✓ Zn⇥n
q be a set of linearly independent basis vectors for

Zn
q . Define the corresponding lattice

L = L(B) =

(
nX

i=1

zibi : zi 2 Z
)

.

(In other words, a lattice is a set of integer linear combinations.)

Define the minimum distance of a lattice as

�1(L) = min

v2L\{0}
kvk .



Shortest vector problem

The shortest vector problem (SVP) is: given a basis B for some lattice L =

L(B), find a shortest non-zero vector, i.e., find v 2 L such that kvk = �1(L).
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The decision approximate shortest vector problem (GapSVP�) is: given a basis

B for some lattice L = L(B) where either �1(L)  1 or �1(L) > �, determine

which is the case.



Shortest vector problem
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• Can solve                     using lattice reduction algorithm like LLL

• Runtime depends on approximation factor gamma

• No known classical or quantum algorithm can get polynomial approximation 
factor in polynomial runtime

GapSVP�



Hardness of decision ring-LWE
worst-case approximate shortest 
(independent) vector problem 
(SVP/SIVP) on ideal lattices in R

search ring-LWE

decision ring-LWE

decision ring-LWE 
with short secrets

• GapSVP parameter gamma 
depends on LWE parameters 
n, q, and error distribution 

• Estimate parameters based on 
runtime of lattice reduction 
algorithms e.g. [APS15]

• (Ignore non-tightness.) 
[CKMS16]

poly-time [LPR10]

poly-time [LPR10]

tight [ACPS09]

[LPR10] Lyubashevsky, Piekert, Regev. EUROCRYPT 2010.
[ACPS15] Applebaum, Cash, Peikert, Sahai. CRYPTO 2009.
[CKMS16] Chatterjee, Koblitz, Menezes, Sarkar. ePrint 2016/360.
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Basic ring-LWE-DH key agreement (unauthenticated)

public: uniform a in Rq = Zq[x]/(xn+1)
Alice

secret: 
random “small” s, e in Rq

Bob

secret:
random “small” s’, e’ in Rq

b = a • s + e

b’ = a • s’ + e’

shared secret: 
s • b’ = s • (a • s’ + e’) ≈ s • a • s’

shared secret: 
b • s’ ≈ s • a • s’

Based on Lindner–Peikert ring-LWE public key encryption scheme

These are only approximately equal ⇒ need rounding
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Rounding
• Each coefficient of the polynomial is an integer modulo q
• Treat each coefficient independently
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Basic rounding
• Round either to 0 or q/2
• Treat q/2 as 1

0

q/4

q/2

3q/4

round 
to 0

round 
to 1

This works 
most of the time: 
prob. failure 2-10.

Not good enough: 
we need exact key 

agreement.

McMaster Math • 2016-11-18 Post-quantum key exchange for the Internet • Stebila 57



Better rounding
Bob says which of two regions 
the value is in:         or

0

q/4

q/2

3q/4

If 0

q/4

q/2

3q/4

If 0

q/4

q/2

3q/4
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Better rounding
• If | alice – bob | ≤ q/8, then this always works.

• For our parameters, probability | alice – bob | > q/8 
is less than 2-128000.

• Security not affected: revealing            or           leaks no information

bob alice

alice

alice

If 0

q/4

q/2

3q/4
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Exact ring-LWE-DH key agreement (unauthenticated)

public: uniform a in Rq = Zq[x]/(xn+1)

Alice

secret: 
random “small” s, e in Rq

Bob

secret:
random “small” s’, e’ in Rq

b = a • s + e

b’ = a • s’ + e’,        or

shared secret: 
round(s • b’)

shared secret: 
round(b • s’)
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Based on Lindner–Peikert ring-LWE public key encryption scheme

Thm: Key exchange is secure if decision ring learning with errors problem is hard.



Parameters
160-bit classical security, 
80-bit quantum security

• n = 1024
• q = 232–1
• 𝜒 = discrete Gaussian with 
parameter sigma = 8/sqrt(2π)

• Failure: 2-12800

• Total communication: 8.1 KiB
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Implementation aspect 1: 

Polynomial arithmetic
• Polynomial multiplication in Rq = Zq[x]/(x1024+1) done with Nussbaumer’s FFT:

• Rather than working modulo degree-1024 polynomial with coefficients in Zq, 
work modulo:
• degree-256 polynomial whose coefficients are themselves polynomials modulo a degree-4 

polynomial,
• or degree-32 polynomials whose coefficients are polynomials modulo degree-8 polynomials 

whose coefficients are polynomials
• or …

If 2m = rk, then

R[X]

hX2m + 1i
⇠=

⇣
R[Z]

hZr+1i

⌘
[X]

hXk � Zi
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Implementation aspect 2: 

Sampling discrete Gaussians

• Security proofs require “small” elements sampled within statistical distance 
2-128 of the true discrete Gaussian

• We use inversion sampling: precompute table of cumulative probabilities
• Choosing a good distribution and sampling efficiently is a challenge

DZ,�(x) =
1

S

e

� x

2

2�2
for x 2 Z,� ⇡ 3.2, S = 8
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Key agreement from LWE
Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila. 
Frodo: Take off the ring! Practical, quantum-safe key exchange from LWE.
ACM Conference on Computer and Communications Security (CCS) 2016.

https://eprint.iacr.org/2016/659
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Cyclic structure

Þ Save communication, 
more efficient computation

4 KiB representation

Ring-LWE LWE

Z7⇥4
13

4 1 11 10

2738 3842 3345 2979 …
2896 595 3607
377 1575

2760
…

640

256

640 × 256 × 12 bits =   245 KiB

Z640⇥256
4093
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Cyclic structure

Þ Save communication, 
more efficient computation

4 KiB representation

Ring-LWE LWE

Z7⇥4
13

4 1 11 10

2738 3842 3345 2979 …
2896 595 3607
377 1575

2760
…

752

8

752 × 8 × 15 bits =   11 KiB

Z752⇥8
215
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Why consider (slower, bigger) LWE?

• Ring-LWE matrices have 
additional structure
• Relies on hardness of a problem in 

ideal lattices

• LWE matrices have 
no additional structure
• Relies on hardness of a problem in 

generic lattices

• Currently, best algorithms for 
ideal lattice problems are 
essentially the same as for 
generic lattices
• Small constant factor improvement 

in some cases
• Very recent quantum polynomial 

time algorithm for Ideal-SVP 
(http://eprint.iacr.org/2016/885) but 
not immediately applicable to ring-
LWE

Generic vs. ideal lattices

If we want to eliminate this additional structure, can we still get an efficient protocol?
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Exact LWE-DH key agreement (unauthenticated)

public: uniform 
Alice

secret: 
random “small” 

Bob

secret:
random “small”

,      or

shared secret: 
round(                           )

shared secret: 
round( )
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Based on Lindner–Peikert LWE public key encryption scheme

Thm: Key exchange is secure if decision learning with errors problem is hard.

S,E 2 Zn⇥m
q B AS+E

B0  S0A+E0

S0,E0 2 Zm⇥n
q

A 2 Zn⇥n
q

B0S ⇡ S0AS S0B ⇡ S0AS



Performance
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Implementations
Our implementations

• Ring-LWE BCNS15
• LWE Frodo

Pure C implementations
Constant time

Compare with others

• RSA 3072-bit (OpenSSL 1.0.1f)
• ECDH nistp256 (OpenSSL)
Use assembly code

• Ring-LWE NewHope
• NTRU EES743EP1
• SIDH (Isogenies) (MSR)
Pure C implementations
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Standalone performance
Speed Communication Quantum

Security

RSA 3072-bit Fast 4 ms Small 0.3 KiB

ECDH nistp256 Very fast 0.7 ms Very small 0.03 KiB

Ring-LWE BCNS Fast 1.5 ms Medium 4 KiB 80-bit

Ring-LWE NewHope Very fast 0.2 ms Medium 2 KiB 206-bit

NTRU EES743EP1 Fast 0.3–1.2 ms Medium 1 KiB 128-bit

SIDH Very slow 35–400 ms Small 0.5 KiB 128-bit

LWE Frodo Recom. Fast 1.4 ms Large 11 KiB 130-bit

McBits* Very fast 0.5 ms Very large 360 KiB 161-bit

Note somewhat incomparable security levels
First 7 rows: x86_64, 2.6 GHz Intel Xeon E5 (Sandy Bridge) – Google n1-standard-4
* McBits results from source paper [BCS13]
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TLS handshake latency
compared to RSA sig + ECDH nistp256

1.14x

1.24x

0.75x

1.17x

0.88x

1.29x

1.24x

0.81x

1.27x

1.00x

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

LWE Frodo Recom.

NTRU

Ring-LWE NewHope

Ring-LWE BCNS

ECDH nistp256

RSA sig ECDSA sig

x86_64, 2.6 GHz Intel Xeon E5 (Sandy Bridge) – server Google n1-standard-4, client -32 Note somewhat incomparable security levels

smaller (left) is better

baseline
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TLS connection throughput
ECDSA signatures
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1.36x

x86_64, 2.6 GHz Intel Xeon E5 (Sandy Bridge) – server Google n1-standard-4, client -32 Note somewhat incomparable security levels

bigger (top) is better

NewHope

ECDHE

Frodo
BCNS

NTRU

Frodo

0.78x
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Open Quantum Safe
• Open source C library
• Common interface for key exchange and digital signatures

1. Collect post-quantum implementations together
• Our own software
• Thin wrappers around existing open source implementations
• Contributions from others

2. Enable direct comparison of implementations

3. Support prototype integration into application level protocols
• Don’t need to re-do integration for each new primitive – how we did Frodo experiments
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Summary
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Post-quantum key exchange 
for the Internet

• Lots of fun math in public key 
cryptography
• Number theory
• Groups, rings 
• Lattices
• Elliptic curves

• Learning with errors problem
• Difficulty based on lattice problem
• Ring variant for smaller communication

• Building key exchange from LWE
• Ring-LWE is fast and fairly small
• LWE can achieve reasonable key sizes and 

runtime with more conservative assumption

Ring-LWE key exchange
• https://eprint.iacr.org/2014/599

LWE key exchange
• https://eprint.iacr.org/2016/659

Open Quantum Safe
• https://openquantumsafe.org/
• https://eprint.iacr.org/2016/1017

Douglas Stebila

"Thank God number theory is unsullied by 
any application."

— Leonard Dickson (1874–1954)



Appendix
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More on LWE and 
ring-LWE key exchange
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• Key encapsulation 
mechanism based on ring-
LWE

• Key exchange from LWE 
and ring-LWE

Peikert
PQCrypto 2014

Ding, Xie, Lin
ePrint 2012

• Public key encryption from 
ring-LWE

Lyubashevsky, Peikert, Regev
Eurocrypt 2010
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• Public key encryption from 
LWE and ring-LWE

• Key exchange from LWE

Lindner, Peikert
ePrint 2010, CT-RSA 2011



Ring-LWE-DH key agreement

Secure if 
decision ring 
learning with 

errors problem is 
hard.
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Sampling is expensive
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“NewHope”
Alkim, Ducas, Pöppelman, Schwabe. 
USENIX Security 2016

• New parameters
• Different error distribution
• Improved performance
• Pseudorandomly generated 
parameters

• Further performance 
improvements by others 
[GS16,LN16,…]

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
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Decision learning with errors problem with short secrets

Definition. Let n, q 2 N. Let � be a distribution over Z.

Let s
$ �n.

Define:

• O�,s: Sample a
$ U(Zn

q ), e
$ �; return (a,a · s+ e).

• U : Sample (a, b0)
$ U(Zn

q ⇥ Zq); return (a, b0).

The decision LWE problem with short secrets for n, q,�
is to distinguish O�,s from U .
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Hardness of decision LWE

worst-case gap shortest 
vector problem (GapSVP)

decision LWE

decision LWE 
with short secrets

Practice:
• Assume the best way to solve 
DLWE is to solve LWE.

• Assume solving LWE involves 
a lattice reduction problem.

• Estimate parameters based on 
runtime of lattice reduction 
algorithms.

• (Ignore non-tightness.)

poly-time [BLPRS13]

tight [ACPS09]
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“Frodo”: LWE-DH key agreement

Uses two matrix forms of LWE:
• Public key is n x n matrix
• Shared secret is m x n matrix

Secure if 
decision learning 

with errors 
problem is hard 

(and Gen is a secure PRF).

A generated 
pseudorandomly
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Based on Lindner–Peikert LWE key agreement scheme



Rounding
• We extract 4 bits from each of 
the 64 matrix entries in the 
shared secret.
• More granular form of previous 

rounding. 1 15
104

406

919

1206

919

406

104
15 1

0

200

400
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800

1000

1200

1400

-5 -4 -3 -2 -1 0 1 2 3 4 5

Error distribution

• Close to discrete Gaussian in 
terms of Rényi divergence 
(1.000301)

• Only requires 12 bits of 
randomness to sample

var. = 1.75

Parameter sizes, rounding, and 
error distribution all found via 
search scripts.
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Parameters

“Recommended”
• 144-bit classical security,

130-bit quantum security,
103-bit plausible lower bound

• n = 752, m = 8, q = 215

• 𝜒 = approximation to rounded 
Gaussian with 11 elements

• Failure: 2-38.9

• Total communication: 22.6 KiB

“Paranoid”
• 177-bit classical security,

161-bit quantum security,
128-bit plausible lower bound

• n = 864, m = 8, q = 215

• 𝜒 = approximation to rounded 
Gaussian with 13 elements

• Failure: 2-33.8

• Total communication: 25.9 KiB

All known variants of the sieving algorithm require a 
list of vectors to be created of this size
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TLS integration and performance

McMaster Math • 2016-11-18 Post-quantum key exchange for the Internet • Stebila 88



Integration into TLS 1.2
New ciphersuite: 
TLS-KEX-SIG-AES256-GCM-
SHA384
• SIG = RSA or ECDSA 
signatures for authentication

• KEX = Post-quantum key 
exchange

• AES-256 in GCM for 
authenticated encryption

• SHA-384 for HMAC-KDF
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Security within TLS 1.2
Model: 
• authenticated and confidential channel establishment (ACCE) [JKSS12]

Theorem: 
• signed LWE/ring-LWE ciphersuite is ACCE-secure if underlying primitives (signatures, 

LWE/ring-LWE, authenticated encryption) are secure

Interesting provable security detail: 
• TLS proofs use active security of unauthenticated key exchange (IND-CCA KEM or 

PRF-ODH assumption)
• Doesn't hold for basic BCNS15/Frodo/NewHope protocols
• Solution:

• move server’s signature to end of TLS handshake OR
• use e.g. Fujisaki–Okamoto transform to convert passive to active security KEM
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TLS performance

Handshake latency

••Time from when client 
sends first TCP packet 
till client receives first 
application data

••No load on server

Connection throughput

••Number of connections 
per second at server 
before server latency
spikes
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Hybrid ciphersuites
• Use both post-quantum key 
exchange and traditional key 
exchange

• Example: 
• ECDHE + NewHope

• Used in Google Chrome experiment
• ECDHE + Frodo

• Session key secure if either 
problem is hard

• Why use post-quantum?
• (Potential) security against future 

quantum computer

• Why use ECDHE?
• Security not lost against existing 

adversaries if post-quantum 
cryptanalysis advances
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TLS connection throughput – hybrid w/ECDHE
ECDSA signatures
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Open Quantum Safe
Collaboration with Mosca et al., University of Waterloo

https://openquantumsafe.org/
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Open Quantum Safe architecture

Open Quantum Safe Library

OQS-KEX

Ring-LWE

BCNS15 New Hope

LWE

Frodo

McEliece

Neiderreiter
QC-MDPC

NTRU SIDH

OQS-SIG

Hash LWE/ring-
LWE

OQS 
benchmark

Apache 
httpd

OpenSSL
OTR …

Primitive
implementations

Application
integrations

API
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• liboqs
• ring-LWE key exchange using BCNS15
• ring-LWE key exchange using NewHope*
• LWE key exchange using Frodo
• [alpha] code-based key exchange using 

Neiderreiter with quasi-cyclic medium-
density parity check codes

• OpenSSL
• integration into OpenSSL 1.0.2 head

• liboqs
• benchmarking
• key exchange: 

• SIDH, NTRU*

• Integrations into other applications
• libotr

Current status Coming soon

(* via wrappers)

McMaster Math • 2016-11-18 Post-quantum key exchange for the Internet • Stebila 96



OQC contributors and acknowledgements
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(Security Innovation)

• Jennifer Fernick, David Jao, and John 
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