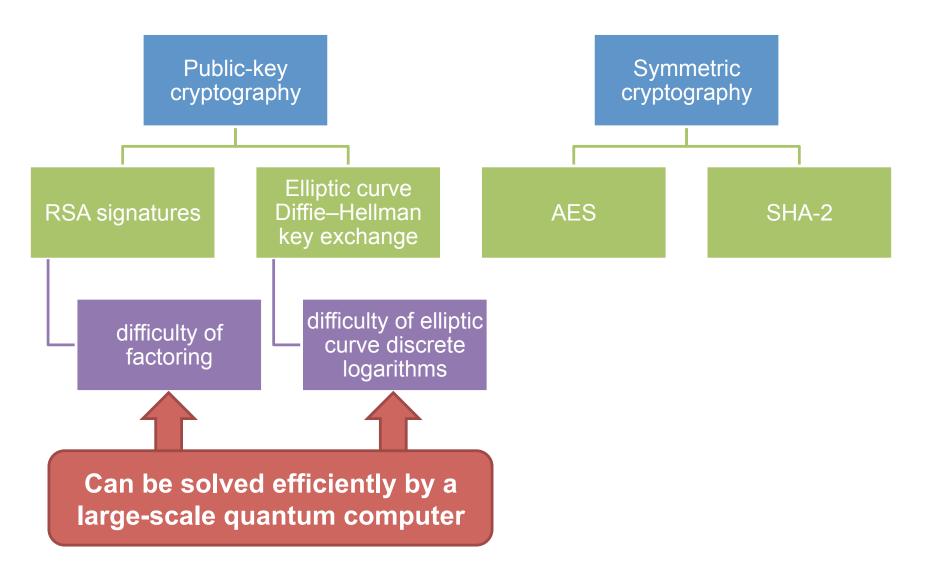
Post-quantum key exchange for the TLS protocol from the ring learning with errors problem

Joppe W. Bos (NXP Semiconductors),
Craig Costello & Michael Naehrig (Microsoft Research),
Douglas Stebila (Queensland University of Technology)

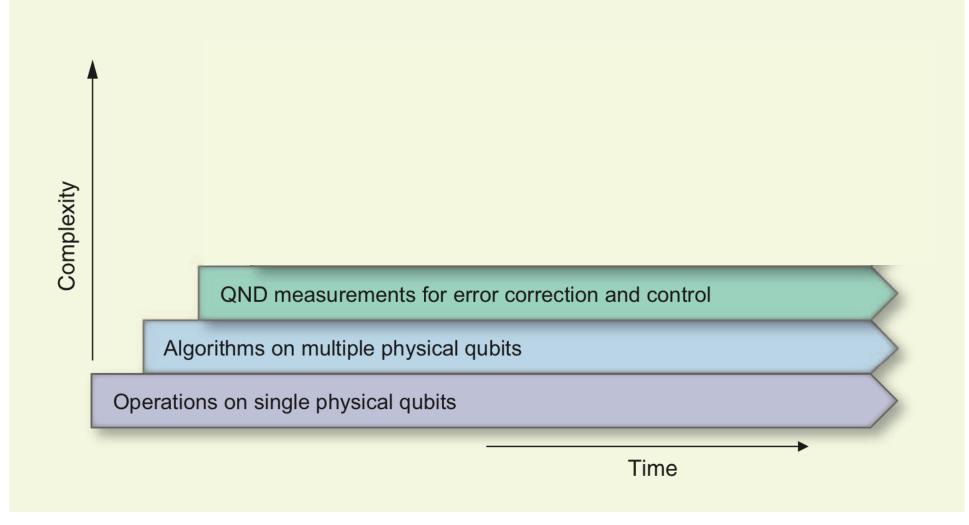
1 Motivation

Contemporary cryptography

TLS-ECDHE-RSA-AES128-GCM-SHA256

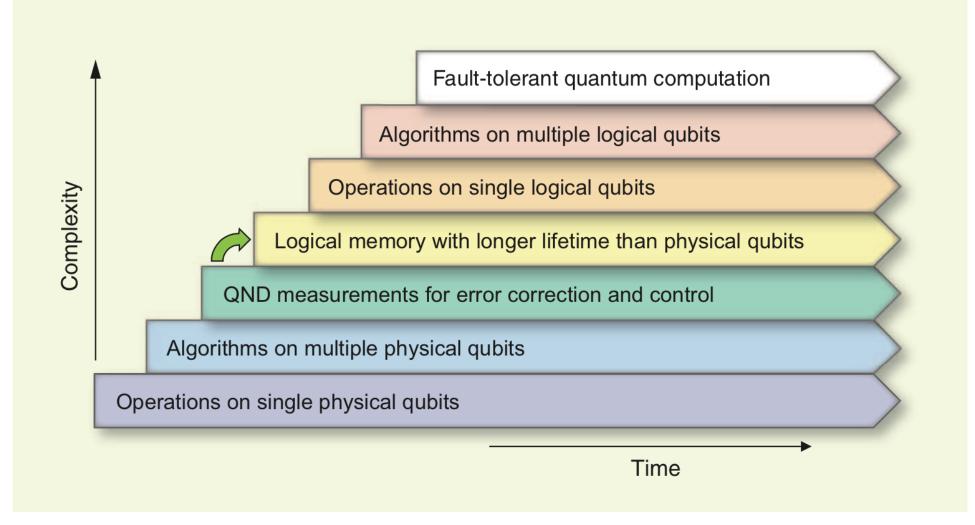


Building quantum computers



Devoret, Schoelkopf. Science 339:1169–1174, March 2013.

Building quantum computers



Devoret, Schoelkopf. Science 339:1169-1174, March 2013.

Post-quantum / quantum-safe crypto

No known exponential quantum speedup:

Code-based

McEliece

Hash-based

- Merkle signatures
- Sphincs

Multivariate

 multivariate quadratic Lattice-based

- NTRU
- learning with errors
- ring-LWE

Lots of questions

Better classical or quantum attacks on post-quantum schemes?

What are the right parameter sizes?

Are the key sizes sufficiently small?

Can we do the operations sufficiently fast?

How do we integrate them into the existing infrastructure?

Lots of questions

This talk: ring learning with errors

Are the key sizes sufficiently small?

Can we do the operations sufficiently fast?

How do we integrate them into the existing infrastructure?

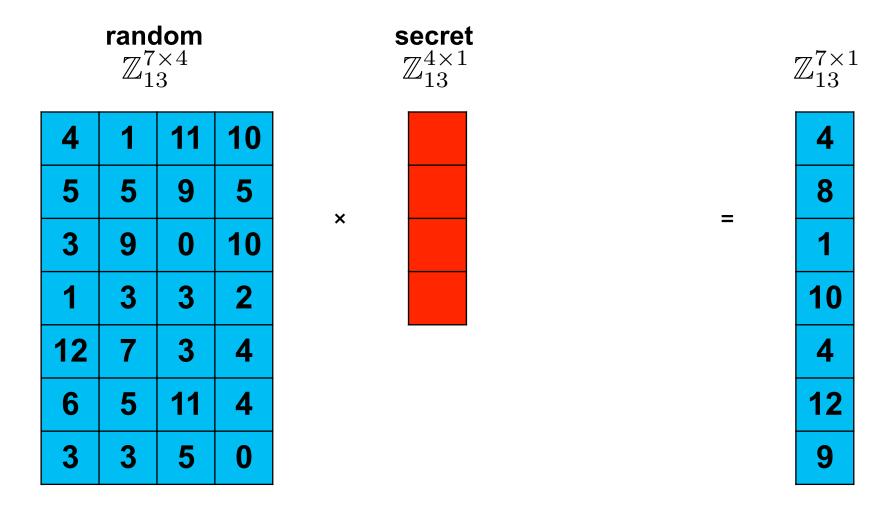
This talk: ring-LWE key agreement in TLS

Premise: large-scale quantum computers don't exist right now, but we want to protect today's communications against tomorrow's adversary.

- Signatures still done with traditional primitives (RSA/ECDSA)
 - we only need authentication to be secure now
 - benefit: use existing RSA-based PKI
- Key agreement done with ring-LWE

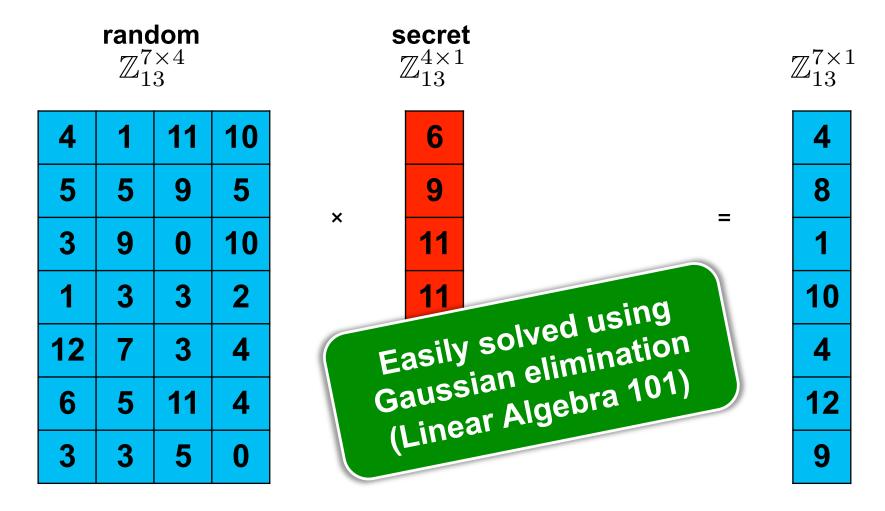
2 Learning with errors

Solving systems of linear equations



Linear system problem: given blue, find red

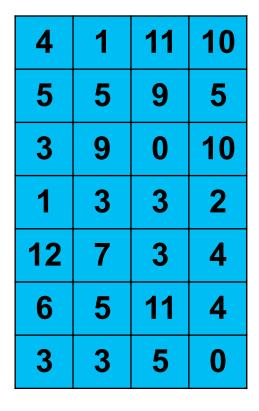
Solving systems of linear equations



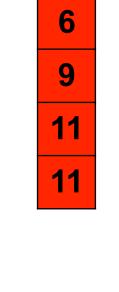
Linear system problem: given blue, find red

Learning with errors problem

$\begin{array}{c} \text{random} \\ \mathbb{Z}_{13}^{7\times4} \end{array}$



$\begin{array}{c} \textbf{secret} \\ \mathbb{Z}_{13}^{4\times 1} \end{array}$



X

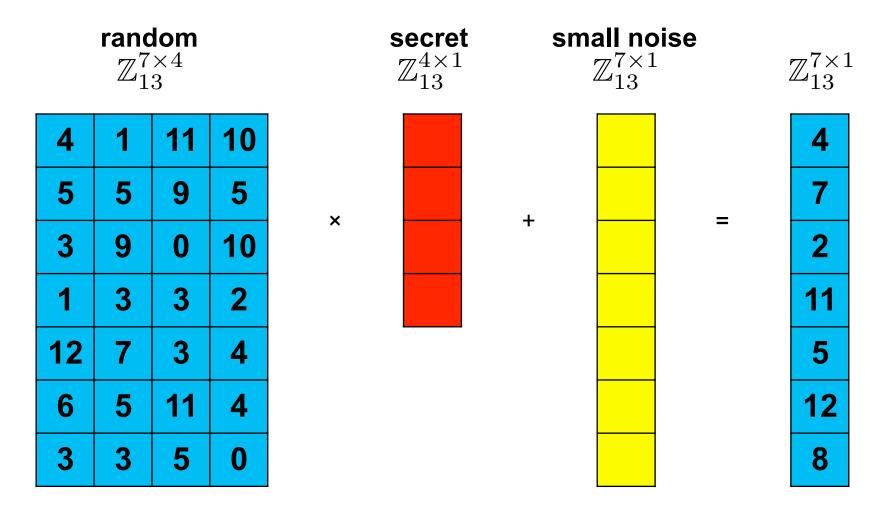
small noise

$$\mathbb{Z}_{13}^{7\times 1}$$
 $\mathbb{Z}_{13}^{7\times 1}$

12

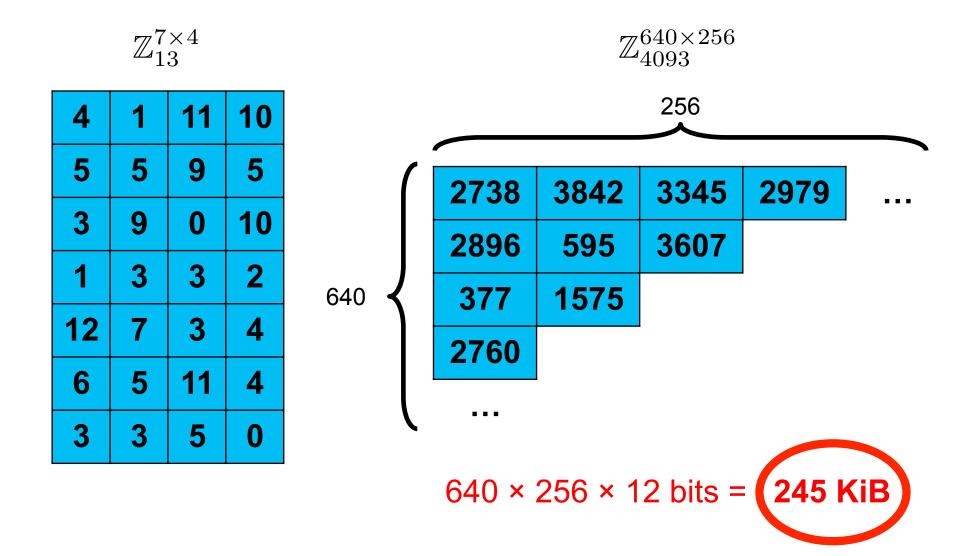
8

Learning with errors problem



LWE problem: given blue, find red

Toy example versus real-world example



random

$$\mathbb{Z}_{13}^{7\times4}$$

4	1	11	10
10	4	1	11
11	10	4	1
1	11	10	4
4	1	11	10
10	4	1	11
11	10	4	1

Each row is the cyclic shift of the row above

random

$$\mathbb{Z}_{13}^{7\times4}$$

4	1	11	10
3	4	1	11
2	3	4	1
12	2	3	4
9	12	2	3
10	9	12	2
11	10	9	12

Each row is the cyclic shift of the row above

. . .

with a special wrapping rule: *x* wraps to –*x* mod 13.

random

$$\mathbb{Z}_{13}^{7\times4}$$

Each row is the cyclic shift of the row above

. . .

with a special wrapping rule: *x* wraps to –*x* mod 13.

So I only need to tell you the first row.

×

$$\mathbb{Z}_{13}[x]/\langle x^4+1\rangle$$

$$4 + 1x + 11x^2 + 10x^3$$

random

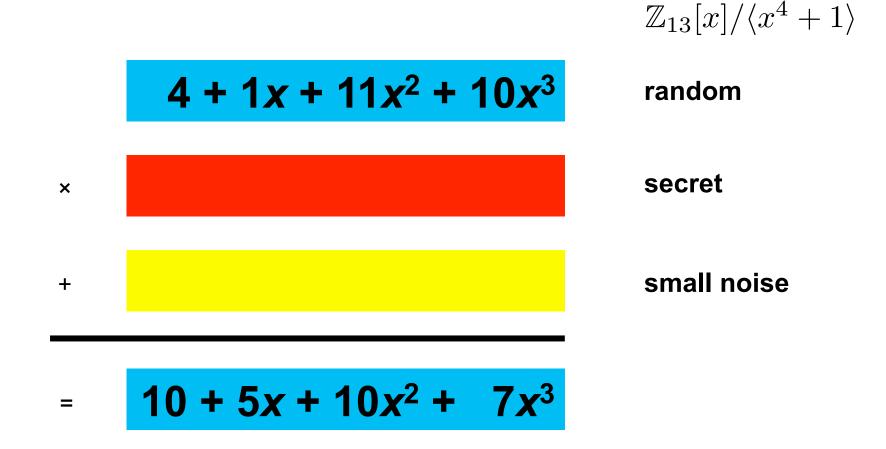
$$6 + 9x + 11x^2 + 11x^3$$

secret

$$0 - 1x + 1x^2 + 1x^3$$

small noise

$$= 10 + 5x + 10x^2 + 7x^3$$



Ring-LWE problem: given blue, find red

Decision ring learning with errors problem with small secrets

$$\mathbb{Z}_{13}[x]/\langle x^4+1\rangle$$

$$4 + 1x + 11x^2 + 10x^3$$

random

$$\times$$
 1 + 0x - 1x² + 2x³

small secret

$$+ 0 - 1x + 1x^2 + 1x^3$$

small noise

$$= 10 + 5x + 10x^2 + 7x^3$$

looks random

Decision ring-LWE problem: given blue, distinguish green from random

Hardness of DRLWE

Theory:

 Poly-time (quantum) reduction from approximate shortest-independent vector problem (SIVP) on ideal lattices in R to DRLWE. [LPR10]

Practice:

- Assume the best way to solve DRLWE is to solve LWE.
- Solving LWE generally involves a lattice reduction problem.
- Albrecht et al. (eprint 2015/046) have hardness estimates.

For 160-bit classical security (≥ 80-bit quantum security), need larger polynomials with larger coefficients.

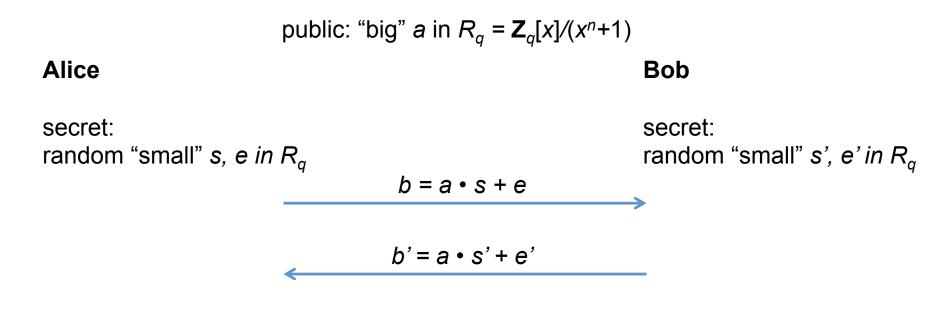
$$\mathbb{Z}_{2^{32}-1}[x]/\langle x^{1024}+1\rangle$$

 $1024 \times 32 \text{ bits} = 4 \text{ KiB}$

3 Key agreement

Basic ring-LWE-DH key agreement (unauthenticated)

• Reformulation of Peikert's R-LWE KEM (PQCrypto 2014)



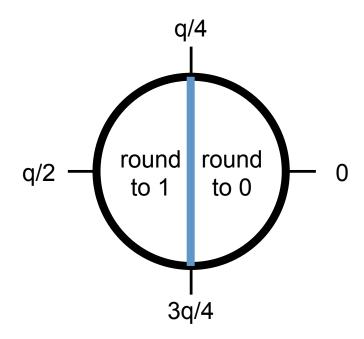
shared secret:

$$s \cdot b' = s \cdot (a \cdot s' \cdot e') \approx s \cdot a \cdot s'$$
 shared secret:
 $b \cdot s' \approx s \cdot a \cdot s'$

These are only approximately equal => need rounding

Basic rounding

- Each coefficient of the polynomial is an integer modulo q
- Round either to 0 or q/2
- Treat q/2 as 1

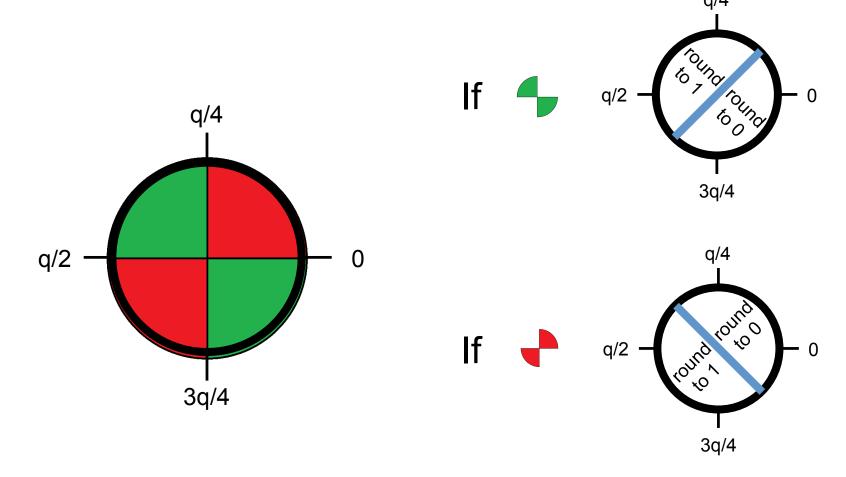


This works most of the time: prob. failure 1/2¹⁰.

Not good enough: we need exact key agreement.

Better rounding (Peikert)

Bob says which of two regions the value is in: — or



Better rounding (Peikert)

- If $|u-v| \le q/8$, then this always works.
- For our parameters, probability |u-v| > q/8 is less than 2⁻¹²⁸⁰⁰⁰.
- Security not affected: revealing or leaks no information

Exact ring-LWE-DH key agreement (unauthenticated)

• Reformulation of Peikert's R-LWE KEM (*PQCrypto 2014*)

Alice

secret: randon

Secure if decision ring learning with errors problem is hard.

s', e' in R_q

Decision ring-LWE is hard if a related lattice shortest vector problem is hard.

shared secret: round(s • b')

shared secret: round(b • s')

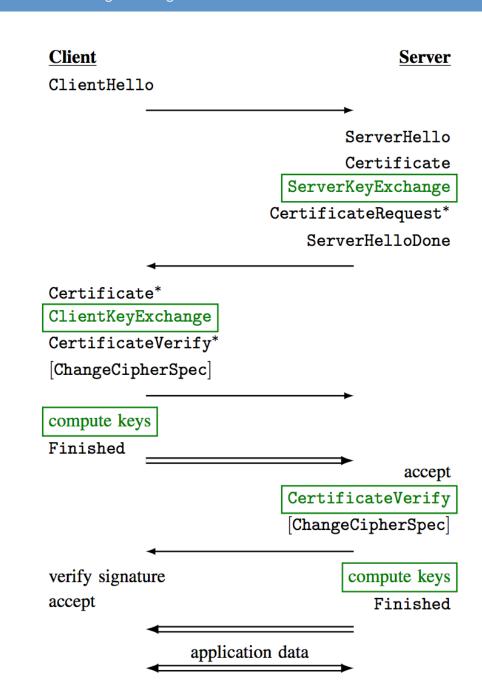
4 Implementation in TLS

Integration into TLS 1.2

New ciphersuite:

TLS-RLWE-SIG-AES128-GCM-SHA256

- RSA / ECDSA signatures for authentication
- Ring-LWE-DH for key exchange
- AES for authenticated encryption



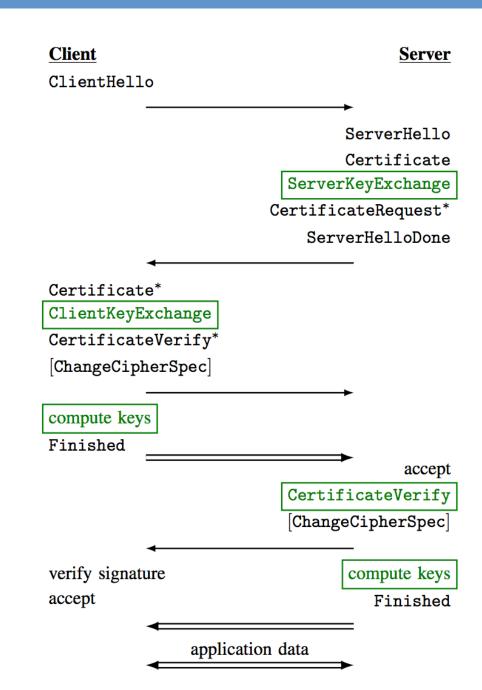
Security within TLS 1.2

Model:

 authenticated and confidential channel establishment (ACCE) (Jager et al., Crypto 2012)

Theorem:

- signed ring-LWE ciphersuite is ACCE-secure if underlying primitives (signatures, ring-LWE, authenticated encryption) are secure
 - Interesting technical detail for ACCE provable security people: need to move server's signature to end of TLS handshake because oracle-DH assumptions don't hold for ring-LWE



Implementation

Added ciphersuites in OpenSSL libssl

Wrapped RLWE key exchange into OpenSSL libcrypto

Basic RLWE implemented in standalone C

constant-time

non-constant-time

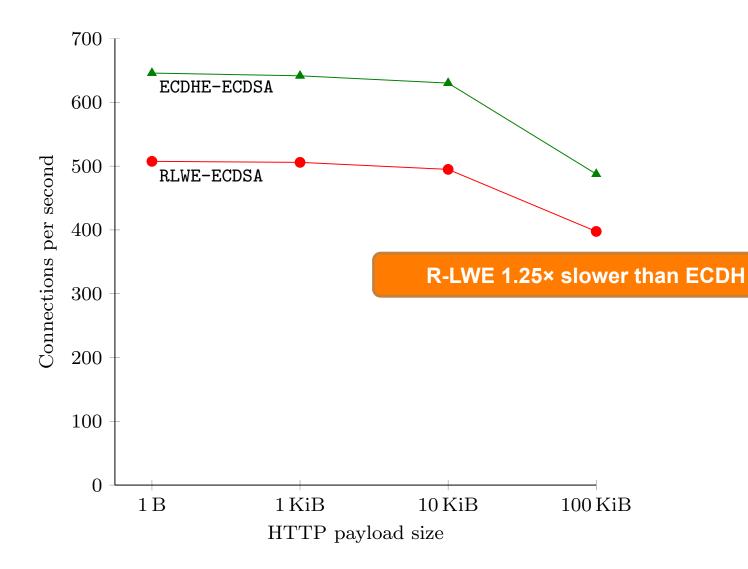
Performance – crypto operations

Operation	Client	Server
R-LWE key generation	0.9ms	0.9ms
R-LWE Alice	0.5ms	
R-LWE Bob		0.1ms
R-LWE total runtime	1.4ms	1.0ms
ECDH nistp256 (OpenSSL)	0.8ms	0.8ms

R-LWE 1.75× slower than ECDH

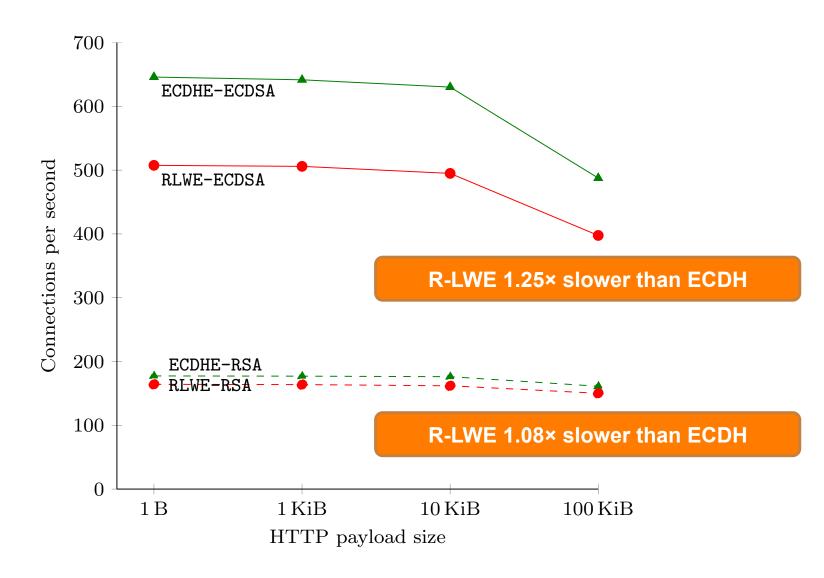
constant-time implementation Intel Core i5 (4570R), 4 cores @ 2.7 GHz Ilvm 5.1 (clang 503.0.30) –O3 OpenSSL 1.0.1f

Performance – in TLS



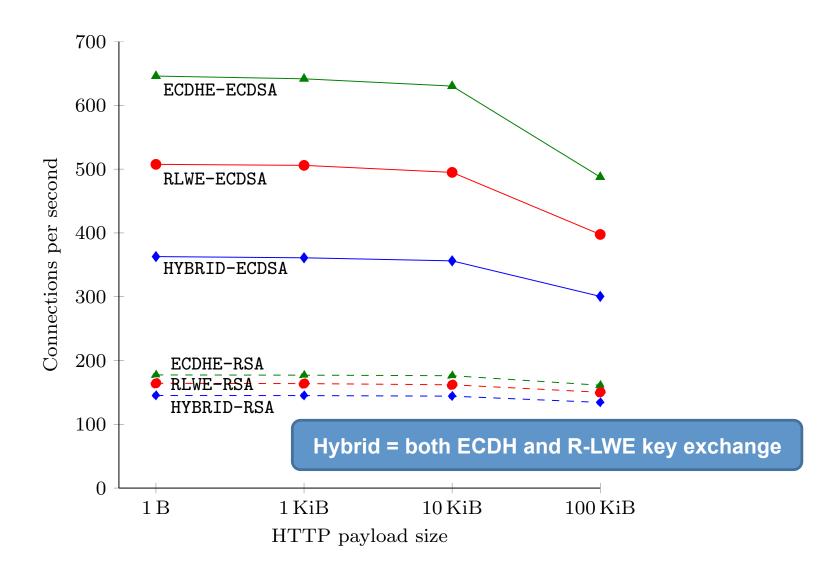
Ring-LWE adds about 8 KiB to handshake size

Performance – in TLS



Ring-LWE adds about 8 KiB to handshake size

Performance – in TLS



Ring-LWE adds about 8 KiB to handshake size

5 Summary

Summary

Ring-LWE ciphersuite with traditional signatures:

- Key sizes: not too bad (8 KiB overhead)
- Performance: small overhead (1.1–1.25×) within TLS.
- Integration into TLS: requires reordering messages, but otherwise okay.

Caveat: lattice-based assumptions less studied, algorithms solving ring-LWE may improve, security parameter estimation may evolve.

Future work

better attacks / parameter estimation

- taking into account reduction tightness
- estimate based on best quantum algorithm for solving RLWE

ring-LWE performance improvements

- assembly
- alternative FFT
- better sampling, ...

other post-quantum key exchange algorithms

post-quantum authentication

Links

Full version

http://eprint.iacr.org/2014/599

Magma code:

 http://research.microsoft.com/ en-US/downloads/6bd592d7cf8a-4445-b736-1fc39885dc6e/ default.aspx

Standalone C implementation

 https://github.com/dstebila/ rlwekex

Integration into OpenSSL

 https://github.com/dstebila/ openssl-rlwekex