Post-quantum key exchange for the TLS protocol from the ring learning with errors problem

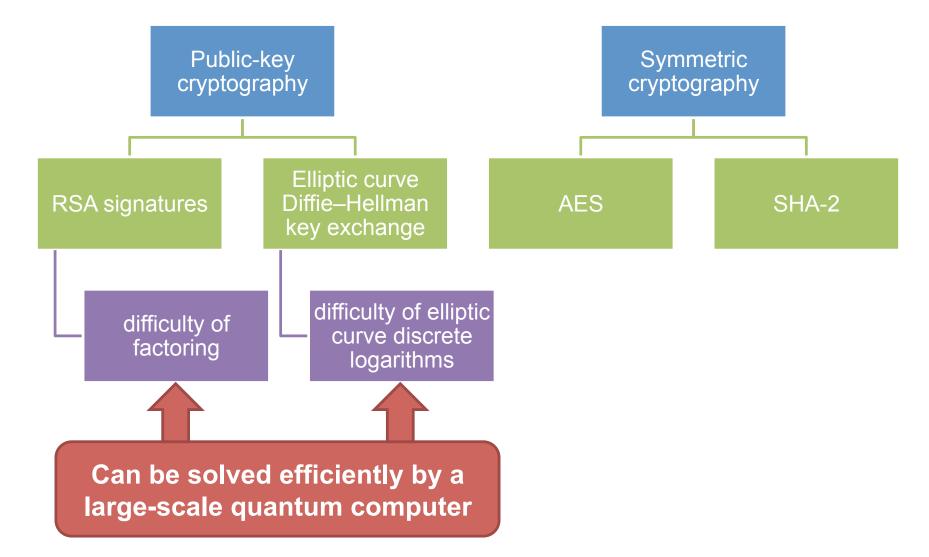
Douglas Stebila

joint work with Joppe Bos (NXP), Craig Costello & Michael Naehrig (Microsoft Research)

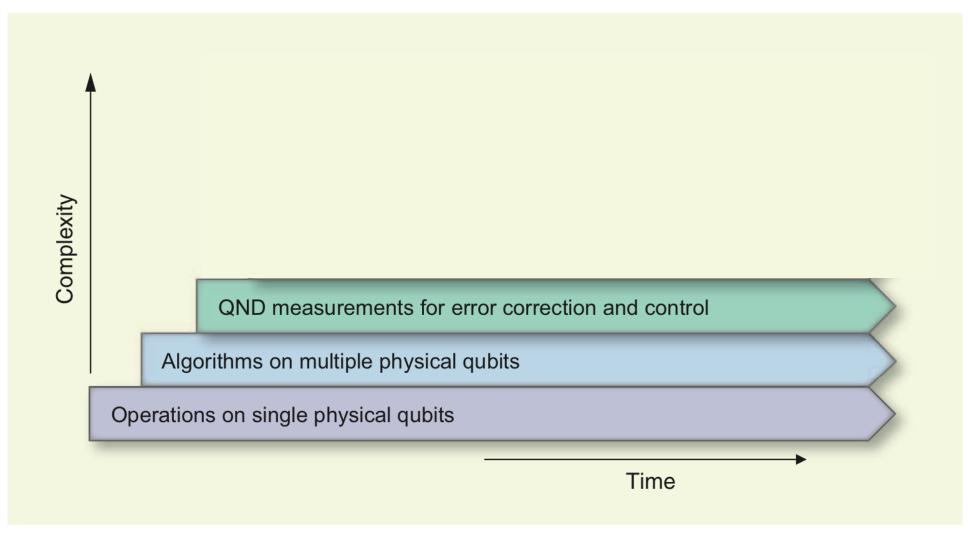
QUT Information Security colloquium • May 15, 2015

Background

Contemporary cryptography TLS-ECDHE-RSA-AES128-GCM-SHA256

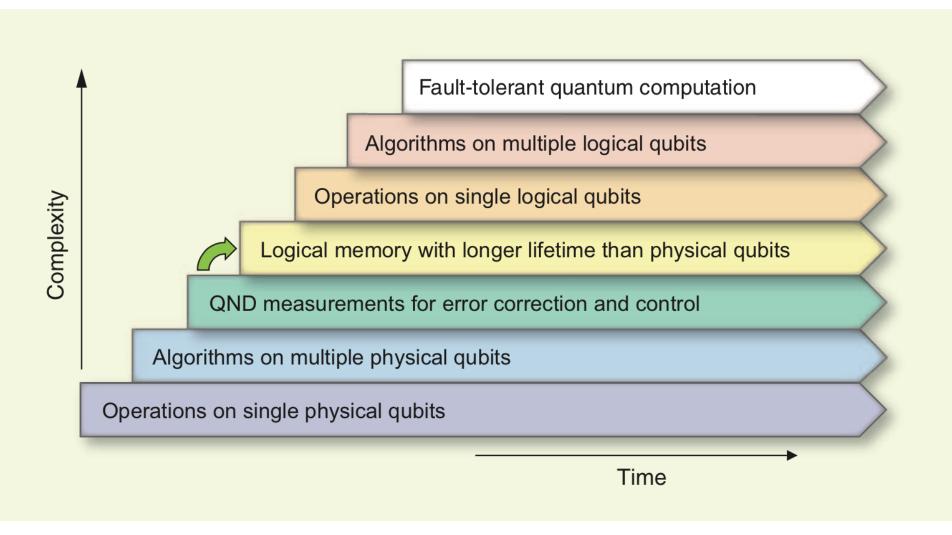


Building quantum computers



Devoret, Schoelkopf. Science 339:1169–1174, March 2013.

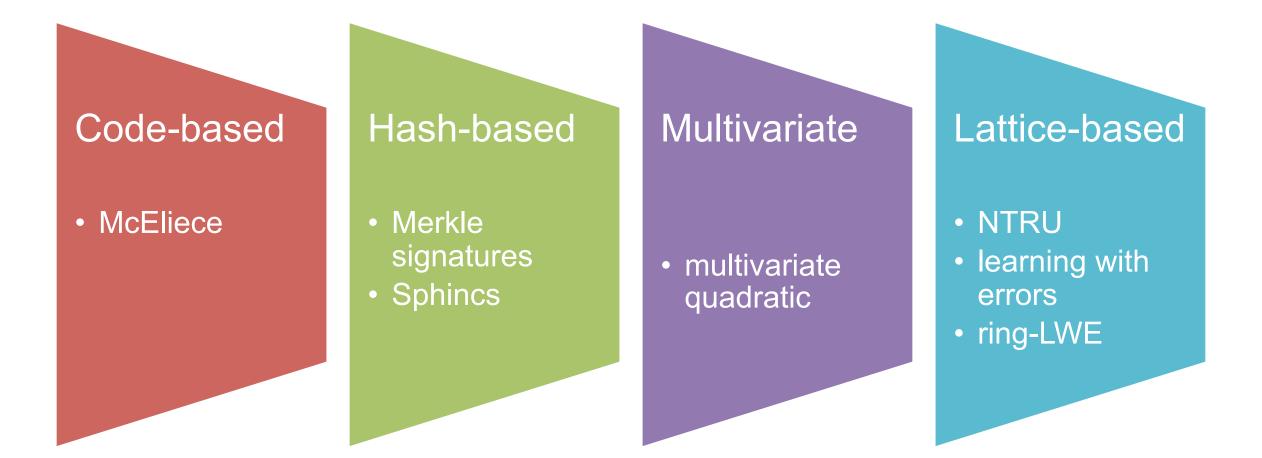
Building quantum computers



Devoret, Schoelkopf. Science 339:1169–1174, March 2013.

Post-quantum / quantum-safe crypto

No known exponential quantum speedup:



Lots of questions

Better classical or quantum attacks on post-quantum schemes?

What are the right parameter sizes?

Are the key sizes sufficiently small?

Can we do the operations sufficiently fast?

How do we integrate them into the existing infrastructure?

Lots of questions

This talk: ring learning with errors

Are the key sizes sufficiently small?

Can we do the operations sufficiently fast?

How do we integrate them into the existing infrastructure?

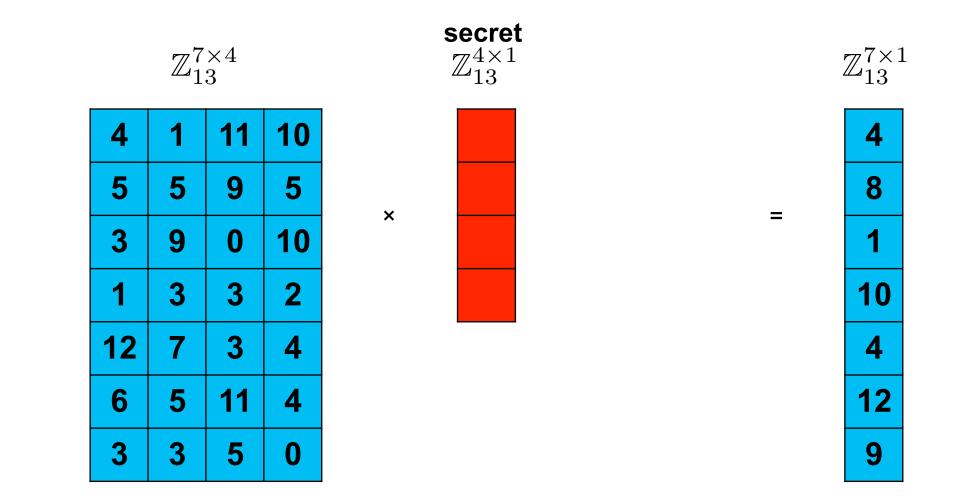
This talk: ring-LWE key agreement in TLS

Premise: large-scale quantum computers don't exist right now, but we want to protect today's communications against tomorrow's adversary.

- Signatures still done with traditional primitives (RSA/ECDSA)
 - we only need authentication to be secure *now*
 - benefit: use existing RSA-based PKI
- Key agreement done with ring-LWE

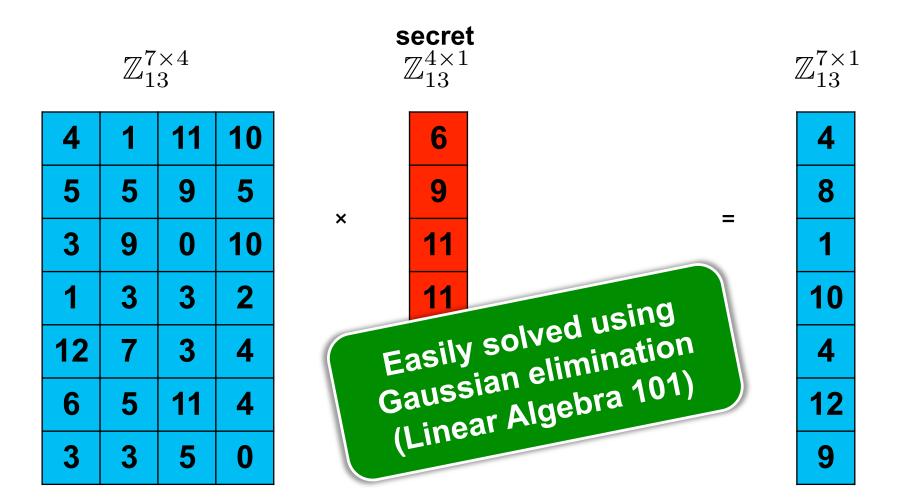
Learning with errors

Solving systems of linear equations



Linear system problem: given blue, find red

Solving systems of linear equations



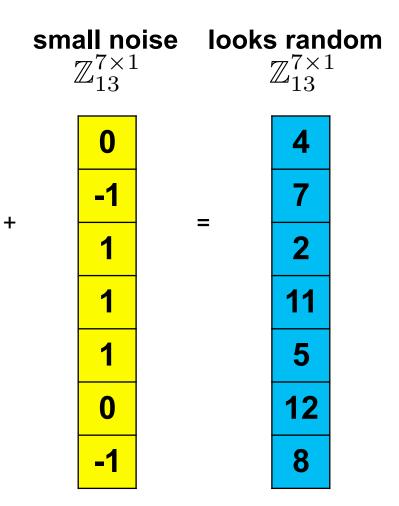
Linear system problem: given blue, find red

Learning with errors problem

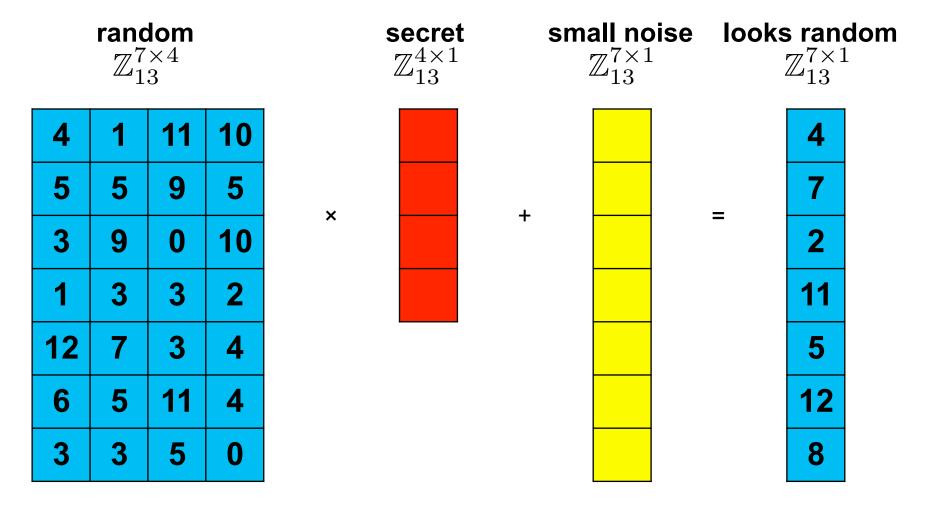
random

×

secret

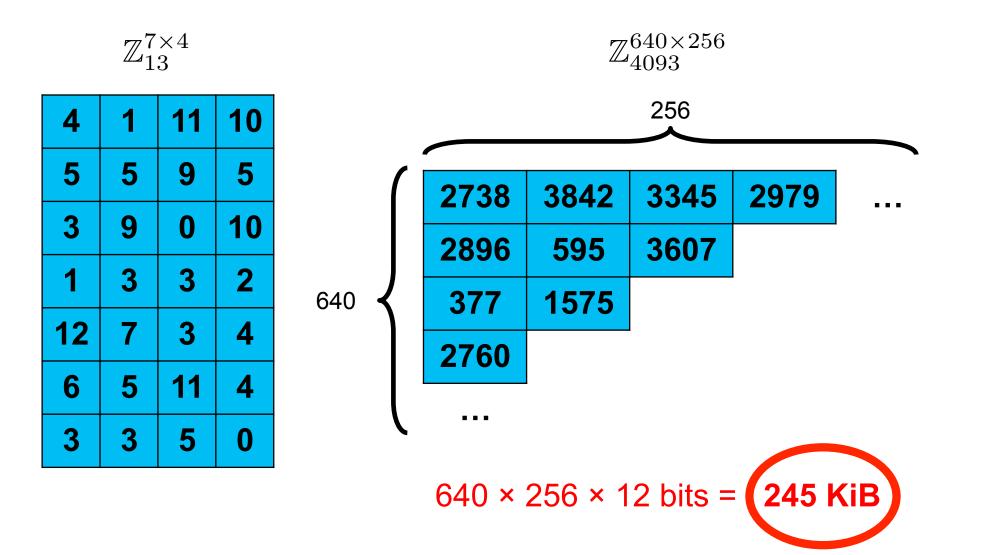


Learning with errors problem



LWE problem: given blue, find red

Toy example versus real-world example



 $\overset{\textbf{random}}{\mathbb{Z}^{7\times 4}_{13}}$

4	1	11	10
10	4	1	11
11	10	4	1
1	11	10	4
4	1	11	10
10	4	1	11
11	10	4	1

Each row is the cyclic shift of the row above

. . .

 $\overset{\textbf{random}}{\mathbb{Z}_{13}^{7\times 4}}$

4	1	11	10
3	4	1	11
2	3	4	1
12	2	3	4
9	12	2	3
10	9	12	2
11	10	9	12

Each row is the cyclic shift of the row above

with a special wrapping rule: x wraps to $-x \mod 13$.

. . .

 $\overset{\text{random}}{\mathbb{Z}_{13}^{7\times 4}}$

Each row is the cyclic shift of the row above

with a special wrapping rule: x wraps to -x mod 13.

So I only need to tell you the first row.

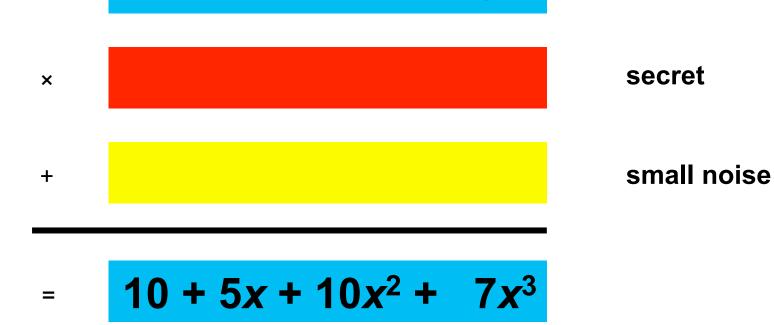
$$\mathbb{Z}_{13}[x]/\langle x^4+1\rangle$$

× $6 + 9x + 11x^2 + 11x^3$ secret		$4 + 1x + 11x^2 + 10x^3$	random
	×	$6 + 9x + 11x^2 + 11x^3$	secret
+ $\mathbf{U} - 1\mathbf{X} + 1\mathbf{X}^2 + 1\mathbf{X}^3$ small hole	+	$0 - 1x + 1x^2 + 1x^3$	small noise

$$= 10 + 5x + 10x^2 + 7x^3$$

$$4 + 1x + 11x^2 + 10x^3$$
 random

 $\overline{77}$ [ad] //ad4 (1)



Ring-LWE problem: given blue, find red

Decision ring learning with errors problem $\mathbb{Z}_{13}[x]/\langle x^4+1\rangle$

	$4 + 1x + 11x^2 + 10x^3$	random
×	$6 + 9x + 11x^2 + 11x^3$	secret
+	$0 - 1x + 1x^2 + 1x^3$	small noise
=	$10 + 5x + 10x^2 + 7x^3$	looks random

Decision ring-LWE problem: given blue, distinguish **green** from random

Decision ring learning with errors problem with small secrets $\mathbb{Z}_{13}[x]/\langle x^4 + 1 \rangle$

$$4 + 1x + 11x^2 + 10x^3$$
 random

 \times
 $1 + 0x - 1x^2 + 2x^3$
 small secret

 $+$
 $0 - 1x + 1x^2 + 1x^3$
 small noise

 =
 $10 + 5x + 10x^2 + 7x^3$
 looks random

Decision ring-LWE problem: given blue, distinguish green from random

Notation

- q: a prime
- n: a power of 2
- $R = \mathbb{Z}[X]/(X^n + 1)$: ring of polynomials in X with integer coefficients, polynomial reduction modulo $X^n + 1$
- \mathbb{Z}_q : integers modulo a prime q
- $R_q = \mathbb{Z}_q[X]/(X^n + 1)$: ring of polynomials in X with integer coefficients modulo q, polynomial reduction modulo $X^n + 1$

Decision ring learning with errors problem

Definition. Let n, R, q and R_q be as above. Let χ be a distribution over R, and let $s \stackrel{\$}{\leftarrow} \chi$. Define $O_{\chi,s}$ as the oracle which does the following:

- 1. Sample $a \stackrel{\$}{\leftarrow} \mathcal{U}(R_q), e \stackrel{\$}{\leftarrow} \chi,$
- 2. Return $(a, as + e) \in R_q \times R_q$.

The decision *R*-LWE problem for n, q, χ is to distinguish $O_{\chi,s}$ from an oracle that returns uniform random samples from $R_q \times R_q$. In particular, if \mathcal{A} is an algorithm, define the advantage

$$\operatorname{Adv}_{n,q,\chi}^{\mathsf{drlwe}}(\mathcal{A}) = \left| \Pr\left(s \stackrel{\$}{\leftarrow} \chi; \mathcal{A}^{O_{\chi,s}}(\cdot) = 1\right) - \Pr\left(\mathcal{A}^{\mathcal{U}(R_q \times R_q)}(\cdot) = 1\right) \right|$$

Hardness of DRLWE

<u>Theory:</u>

 There is a poly-time reduction from solving approximate shortest-independent vector problem (SIVP) on ideal lattices in R to solving DRLWE. [LPR10]

Practice:

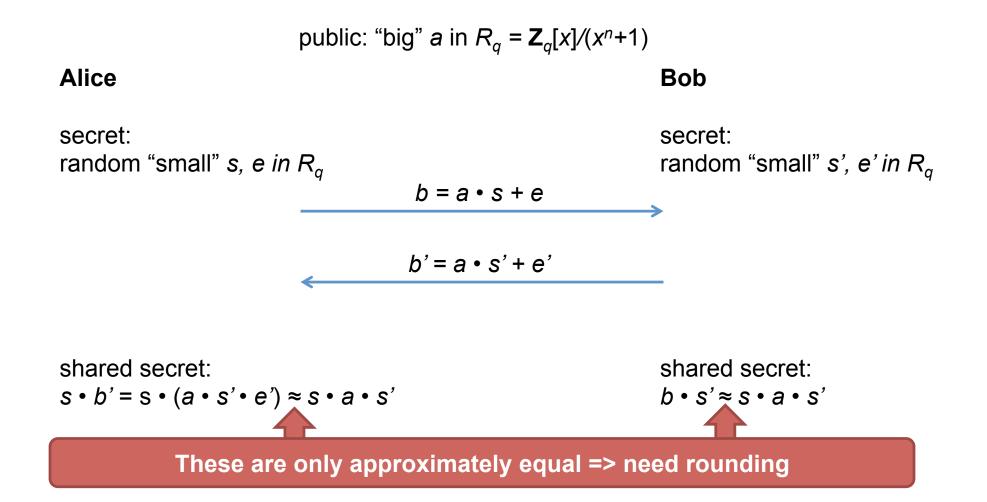
- Assume the best way to solve DRLWE is to solve LWE.
- Solving LWE generally involves a lattice reduction problem.
- Albrecht et al. (eprint 2015/046) have hardness estimates.
- To get 160-bit classical security (≥ 80-bit quantum security):

n = 1024, $q = 2^{32}-1$, chi = discrete Gaussian with parameter sigma = 8/sqrt(2 π)

Key agreement

Basic ring-LWE-DH key agreement (unauthenticated)

• Reformulation of Peikert's R-LWE KEM (PQCrypto 2014)

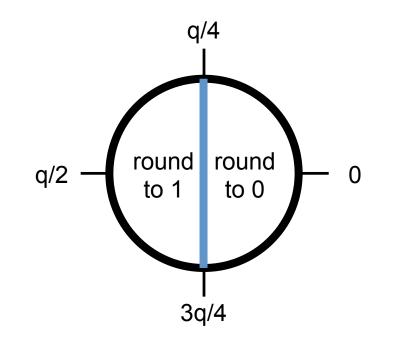


Rounding

- Each coefficient of the polynomial is an integer modulo q
- Treat each coefficient independently

Basic rounding

- Round either to 0 or q/2
- Treat q/2 as 1

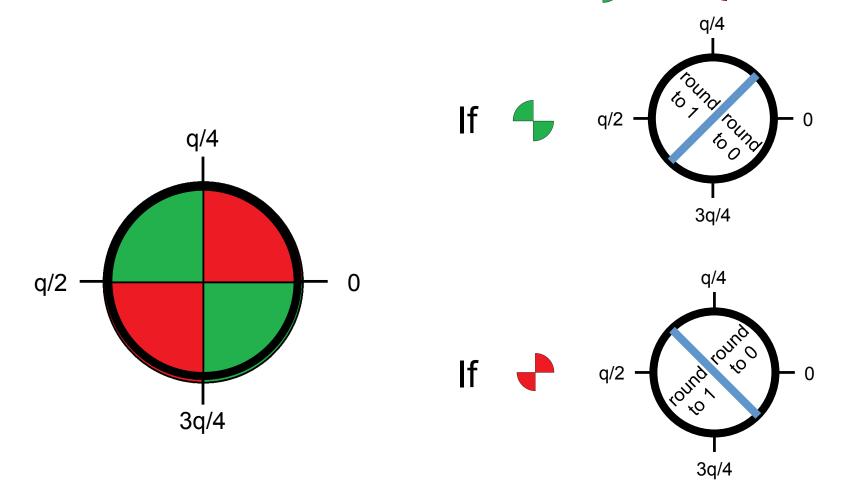


This works most of the time: prob. failure 1/2¹⁰.

Not good enough: we need exact key agreement.

Better rounding (Peikert)

Bob says which of two regions the value is in:

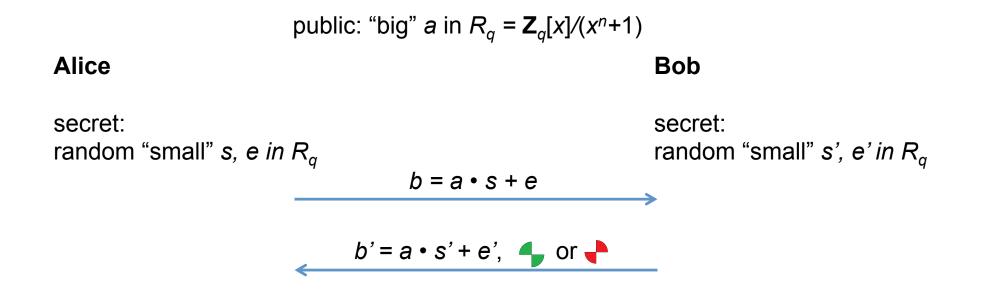


Better rounding (Peikert)

- If $|u-v| \le q/8$, then this always works.
- For our parameters, probability |u-v| > q/8 is less than 2^{-128000.}
- Security not affected: revealing
 or
 leaks no information

Exact ring-LWE-DH key agreement (unauthenticated)

• Reformulation of Peikert's R-LWE KEM (PQCrypto 2014)



shared secret:
round(s • b')

shared secret: round(*b* • *s*')

Ring-LWE-DH key agreement

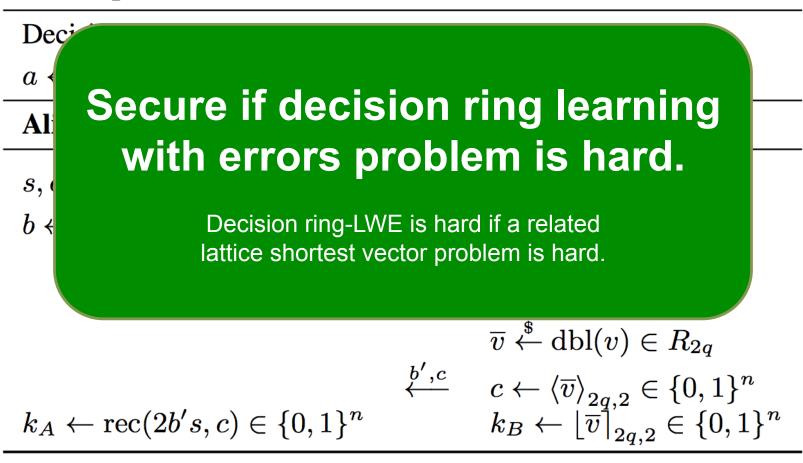
Public parameters

Decision R-LWE parameters q, n, χ $a \stackrel{\$}{\leftarrow} \mathcal{U}(R_q)$

Alice		Bob
$s, e \xleftarrow{\hspace{1.5pt}{\$}} \chi$		$s', e' \xleftarrow{\hspace{0.1in}\$} \chi$
$b \leftarrow as + e \in R_q$	\xrightarrow{b}	$b' \leftarrow as' + e' \in R_q$
		$e^{\prime\prime} \xleftarrow{\hspace{0.1cm}\$} \chi$
		$v \leftarrow bs' + e'' \in R_q$
		$\overline{v} \stackrel{\hspace{0.1em}\scriptscriptstyle\$}{\leftarrow} \operatorname{dbl}(v) \in R_{2q}$
	$\stackrel{b',c}{\longleftarrow}$	$c \leftarrow \langle \overline{v} \rangle_{2q,2} \in \{0,1\}^n$
$k_A \leftarrow \operatorname{rec}(2b's, c) \in \{0, 1\}^n$		$c \leftarrow \langle \overline{v} \rangle_{2q,2} \in \{0,1\}^n$ $k_B \leftarrow \lfloor \overline{v} \rceil_{2q,2} \in \{0,1\}^n$

Ring-LWE-DH key agreement

Public parameters

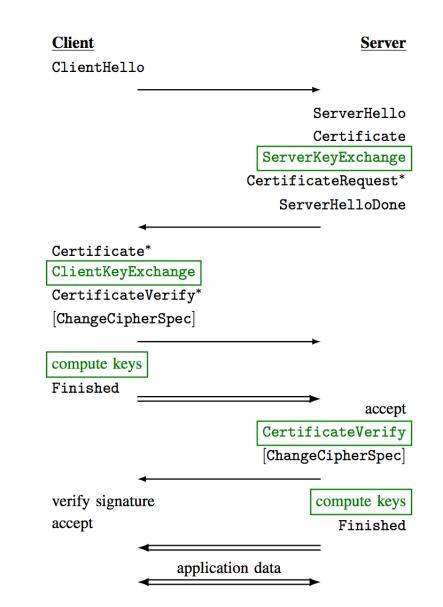


Implementation in TLS

Integration into TLS 1.2

<u>New ciphersuite:</u> TLS-RLWE-SIG-AES128-GCM-SHA256

- RSA / ECDSA signatures for authentication
- Ring-LWE-DH for key exchange
- AES for authenticated encryption



Security within TLS 1.2

Model:

 authenticated and confidential channel establishment (ACCE) (Jager et al., Crypto 2012)

<u>Theorem:</u>

- signed ring-LWE ciphersuite is ACCE-secure if underlying primitives (signatures, ring-LWE, authenticated encryption) are secure
 - Interesting technical detail for ACCE provable security people: need to move server's signature to end of TLS handshake because oracle-DH assumptions don't hold for ring-LWE

Implementation

- Basic RLWE implemented in standalone C
 - two implementations: constant-time and non-constant-time
- Wrapped RLWE key exchange into OpenSSL libcrypto
- Added ciphersuites in OpenSSL libssl

Implementation aspect 1: Polynomial arithmetic

• Polynomial multiplication in $R_q = Z_q[x]/(x^{1024}+1)$ done with Nussbaumer's FFT:

If $2^m = rk$, then

$$\frac{R[X]}{\langle X^{2^m} + 1 \rangle} \cong \frac{\left(\frac{R[Z]}{\langle Z^r + 1 \rangle}\right)[X]}{\langle X^k - Z \rangle}$$

- Rather than working modulo degree-1024 polynomial with coefficients in Z_q, work modulo:
 - degree-256 polynomial whose coefficients are themselves polynomials modulo a degree-4 polynomial,
 - or degree-32 polynomials whose coefficients are polynomials modulo degree-8 polynomials whose coefficients are polynomials
 - or ...

Implementation aspect 2: Sampling discrete Gaussians

$$D_{\mathbb{Z},\sigma}(x) = \frac{1}{S}e^{-\frac{x^2}{2\sigma^2}} \quad \text{for } x \in \mathbb{Z}, \sigma \approx 3.2, S = 8$$

- Security proofs require "small" elements sampled within statistical distance 2⁻¹²⁸ of the true discrete Gaussian
- We use inversion sampling: precompute table of cumulative probabilities
 - For us: 52 elements, size = 10000 bits
- Sampling each coefficient requires six 192-bit integer comparisons and there are 1024 coefficients
 - 51 1024 for constant time

Performance – math operations

Operation	Cycles	
	constant-time	non-constant-time
sample $\stackrel{\$}{\leftarrow} \chi$	1 042 700	668 000
FFT multiplication	342 800	
FFT addition	1 660	
$dbl(\cdot)$ and crossrounding $\langle \cdot \rangle_{2q,2}$	23 500	21 300
	5 500	3,700
rounding $\lfloor \cdot \rceil_{2q,2}$ reconciliation rec (\cdot, \cdot)	14 400	6 800

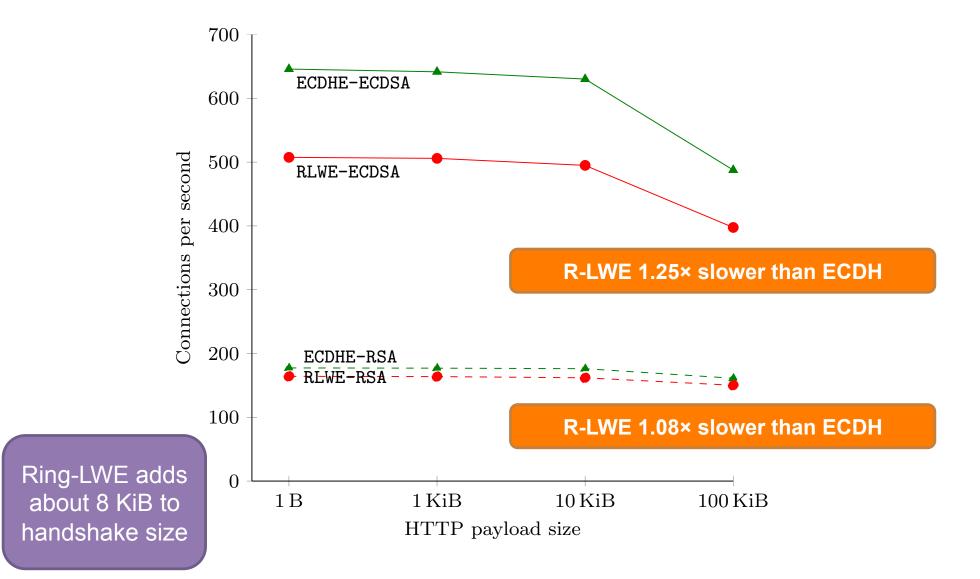
Performance – crypto operations

Operation	Client	Server
R-LWE key generation	0.9ms	0.9ms
R-LWE Alice	0.5ms	
R-LWE Bob		0.1ms
R-LWE total runtime	1.4ms	1.0ms
ECDH nistp256 (OpenSSL)	0.8ms	0.8ms

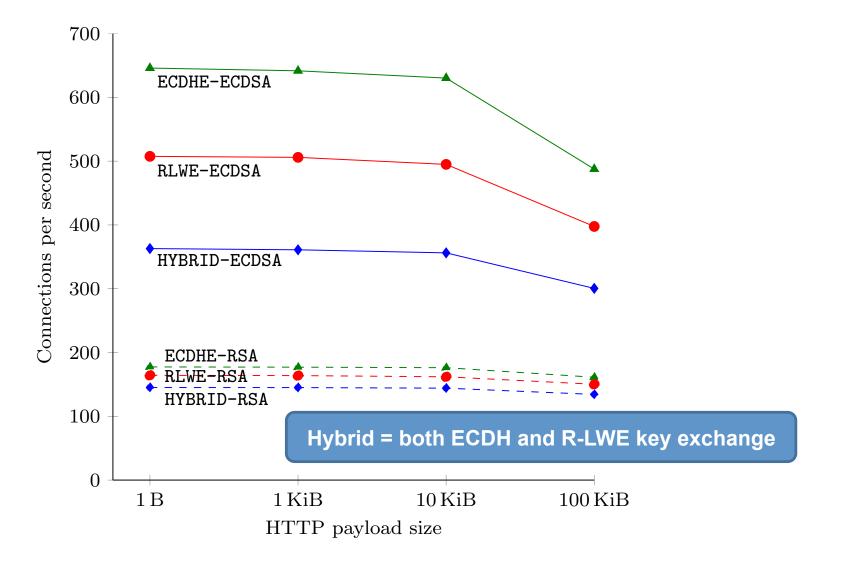
R-LWE 1.75× slower than ECDH

constant-time implementation Intel Core i5 (4570R), 4 cores @ 2.7 GHz Ilvm 5.1 (clang 503.0.30) –O3 OpenSSL 1.0.1f

Performance – in TLS



Performance – in TLS



Summary

Ring-LWE ciphersuite with traditional signatures:

- Key sizes: not too bad (8 KiB overhead)
- Performance: small overhead (1.1–1.25×) within TLS.
- Integration into TLS: requires reordering messages, but otherwise okay.

Caveat: lattice-based assumptions less studied, algorithms solving ring-LWE may improve, security parameter estimation may evolve.

Related / subsequent work

- Authenticated key exchange completely from RLWE (Zhang, Zhang, Ding, Snook, Dagdalen, EUROCRYPT 2015)
- Hybrid RLWE + ECDH key exchange for Tor (Ghosh, Kate, 2015)
- RLWE encryption on microcontrollers (de Clercq, Roy, Vercauteren, Verbauwhede, 2015)
- NTRU-based key exchange for Tor (Schanck, Whyte, Zhang, 2015)

Future work

better attacks / parameter estimation taking into account reduction tightness

estimate based on best quantum algorithm for solving RLWE

ring-LWE performance improvements

assembly

alternative FFT

• better sampling, ...

other post-quantum key exchange algorithms

basic DH directly from LWEeCK-secure key exchange

error correcting codes?

post-quantum authentication

Links

The paper

http://eprint.iacr.org/2014/599

Magma code:

 http://research.microsoft.com/ en-US/downloads/6bd592d7cf8a-4445-b736-1fc39885dc6e/ default.aspx

Standalone C implementation

 https://github.com/dstebila/ rlwekex

Integration into OpenSSL

 https://github.com/dstebila/ openssl-rlwekex