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Background 



Contemporary cryptography 
TLS-‐ECDHE-‐RSA-‐AES128-‐GCM-‐SHA256	  

Public-key 
cryptography 

RSA signatures 

difficulty of 
factoring 

Elliptic curve 
Diffie–Hellman 
key exchange 

difficulty of elliptic 
curve discrete 

logarithms 

Symmetric 
cryptography 

AES SHA-2 

Can be solved efficiently by a  
large-scale quantum computer 



Building quantum computers 

Devoret, Schoelkopf. Science 339:1169–1174, March 2013. 
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Post-quantum / quantum-safe crypto 

Code-based 
 
•  McEliece 

Hash-based 
 
•  Merkle 

signatures 
•  Sphincs 

Multivariate  
 
 
•  multivariate 

quadratic 

Lattice-based 
 
•  NTRU 
•  learning with 

errors 
•  ring-LWE 

No known exponential quantum speedup: 



Lots of questions 

Better classical or quantum attacks on post-quantum schemes? 

What are the right parameter sizes? 

Are the key sizes sufficiently small? 

Can we do the operations sufficiently fast? 

How do we integrate them into the existing infrastructure? 
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This talk: ring learning with errors 



This talk: ring-LWE key agreement in TLS 

• Signatures still done with traditional primitives (RSA/ECDSA)  
•  we only need authentication to be secure now 
•  benefit: use existing RSA-based PKI 

• Key agreement done with ring-LWE 

Premise: large-scale quantum computers don’t 
exist right now, but we want to protect today’s 

communications against tomorrow’s adversary. 



Learning with errors 



Solving systems of linear equations 

Linear system problem: given blue, find red 
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Solving systems of linear equations 
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Easily solved using 

Gaussian elimination 

(Linear Algebra 101) 
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Learning with errors problem 
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Learning with errors problem 

LWE problem: given blue, find red 

Z7⇥4
13

random secret small noise looks random 
Z7⇥1
13 Z7⇥1
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Toy example versus real-world example 

Z7⇥4
13

4 1 11 10 
5 5 9 5 
3 9 0 10 
1 3 3 2 

12 7 3 4 
6 5 11 4 
3 3 5 0 

2738 3842 3345 2979 … 
2896 595 3607 
377 1575 

2760 
… 

640 

256 

640 × 256 × 12 bits =   245 KiB 

Z640⇥256
4093



Ring learning with errors problem 

Z7⇥4
13

random 

4 1 11 10 
10 4 1 11 
11 10 4 1 
1 11 10 4 
4 1 11 10 

10 4 1 11 
11 10 4 1 

Each row is the cyclic  
shift of the row above 



Ring learning with errors problem 

Z7⇥4
13

random 

4 1 11 10 
3 4 1 11 
2 3 4 1 

12 2 3 4 
9 12 2 3 

10 9 12 2 
11 10 9 12 

Each row is the cyclic  
shift of the row above 
… 
with a special wrapping rule: 
x wraps to –x mod 13. 



Ring learning with errors problem 

Z7⇥4
13

random 

4 1 11 10 Each row is the cyclic  
shift of the row above 
… 
with a special wrapping rule: 
x wraps to –x mod 13. 
 
So I only need to tell you the first row. 



Ring learning with errors problem 

4 + 1x + 11x2 + 10x3 

6 + 9x + 11x2 + 11x3 

0 – 1x +   1x2 +   1x3 

10 + 5x + 10x2 +   7x3 

Z13[x]/hx4 + 1i

random 

secret 

small noise 

× 

+ 

= 



Ring learning with errors problem 

4 + 1x + 11x2 + 10x3 

10 + 5x + 10x2 +   7x3 

Z13[x]/hx4 + 1i

random 

secret 

small noise 

Ring-LWE problem: given blue, find red 

× 

+ 
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Decision ring learning with errors problem 

4 + 1x + 11x2 + 10x3 

6 + 9x + 11x2 + 11x3 

0 – 1x +   1x2 +   1x3 

10 + 5x + 10x2 +   7x3 

Z13[x]/hx4 + 1i

random 

secret 

small noise 

looks random 

Decision ring-LWE problem: given blue, 
distinguish green from random 

× 

+ 

= 



Decision ring learning with errors problem with small 
secrets 

4 + 1x + 11x2 + 10x3 

1 + 0x –   1x2 +   2x3 

0 – 1x +   1x2 +   1x3 

10 + 5x + 10x2 +   7x3 

Z13[x]/hx4 + 1i

random 

small secret 

small noise 

looks random 

Decision ring-LWE problem: given blue, 
distinguish green from random 

× 

+ 

= 



Notation 

• q: a prime

• n: a power of 2

• R = Z[X]/(Xn
+ 1): ring of polynomials in X with integer

coe�cients, polynomial reduction modulo Xn
+ 1

• Zq: integers modulo a prime q

• Rq = Zq[X]/(Xn
+ 1): ring of polynomials in X with integer

coe�cients modulo q, polynomial reduction modulo Xn
+ 1



Decision ring learning with errors problem 

Definition. Let n,R, q and Rq be as above. Let � be a distribution

over R, and let s
$ �. Define O�,s as the oracle which does the

following:

1. Sample a
$ U(Rq), e

$ �,

2. Return (a, as+ e) 2 Rq ⇥Rq.

The decision R-LWE problem for n, q,� is to distinguish O�,s from

an oracle that returns uniform random samples from Rq ⇥ Rq. In

particular, if A is an algorithm, define the advantage

Adv

drlwe
n,q,�(A) =

���Pr
⇣
s

$ �;AO�,s
(·) = 1

⌘
� Pr

⇣
AU(Rq⇥Rq)

(·) = 1

⌘��� .



Hardness of DRLWE 
Theory: 
•  There is a poly-time reduction from solving approximate shortest-independent 

vector problem (SIVP) on ideal lattices in R to solving DRLWE. [LPR10] 

Practice: 
• Assume the best way to solve DRLWE is to solve LWE. 
• Solving LWE generally involves a lattice reduction problem. 
• Albrecht et al. (eprint 2015/046) have hardness estimates. 
•  To get 160-bit classical security (≥ 80-bit quantum security): 

n = 1024, q = 232-1, chi = discrete Gaussian with parameter sigma = 8/sqrt(2π) 



Key agreement 



Basic ring-LWE-DH key agreement (unauthenticated) 

public: “big” a in Rq = Zq[x]/(xn+1) 

Alice 
 
secret:  
random “small” s, e in Rq 

Bob 
 
secret: 
random “small” s’, e’ in Rq 

b = a • s + e 

b’ = a • s’ + e’ 

shared secret:  
s • b’ = s • (a • s’ • e’) ≈ s • a • s’ 

shared secret:  
b • s’ ≈ s • a • s’ 

•  Reformulation of Peikert’s R-LWE KEM (PQCrypto 2014) 

These are only approximately equal => need rounding 



Rounding 
• Each coefficient of the polynomial is an integer modulo q 
•  Treat each coefficient independently 



Basic rounding 
• Round either to 0 or q/2 
•  Treat q/2 as 1 

0 

q/4 

q/2 

3q/4 

round  
to 0 

round  
to 1 

This works  
most of the time:  

prob. failure 1/210. 
 

Not good enough: 
we need exact key 

agreement. 



Better rounding (Peikert) 
• Bob says which of two regions the value is in:         or 

0 

q/4 

q/2 

3q/4 

If  0 

q/4 

q/2 

3q/4 

If  0 

q/4 

q/2 

3q/4 



Better rounding (Peikert) 
•  If |u–v| ≤ q/8, then this always works. 

•  For our parameters, probability |u-v| > q/8  
is less than 2-128000. 

• Security not affected: revealing            or           leaks no information 



Exact ring-LWE-DH key agreement (unauthenticated) 

public: “big” a in Rq = Zq[x]/(xn+1) 

Alice 
 
secret:  
random “small” s, e in Rq 

Bob 
 
secret: 
random “small” s’, e’ in Rq 

b = a • s + e 

b’ = a • s’ + e’,        or 

shared secret:  
round(s • b’) 

shared secret:  
round(b • s’) 

•  Reformulation of Peikert’s R-LWE KEM (PQCrypto 2014) 



Ring-LWE-DH key agreement 



Ring-LWE-DH key agreement 

Secure if decision ring learning 
with errors problem is hard. 

 
Decision ring-LWE is hard if a related  
lattice shortest vector problem is hard. 



Implementation in TLS 



Integration into TLS 1.2 
New ciphersuite:  
TLS-‐RLWE-‐SIG-‐AES128-‐GCM-‐
SHA256 
• RSA / ECDSA signatures for 
authentication 

• Ring-LWE-DH for key 
exchange 

• AES for authenticated 
encryption 



Security within TLS 1.2 
Model:  
•  authenticated and confidential channel establishment (ACCE) (Jager et al., 

Crypto 2012) 

Theorem:  
•  signed ring-LWE ciphersuite is ACCE-secure if underlying primitives 

(signatures, ring-LWE, authenticated encryption) are secure 
•  Interesting technical detail for ACCE provable security people: need to move server’s 

signature to end of TLS handshake because oracle-DH assumptions don’t hold for ring-
LWE 



Implementation 
• Basic RLWE implemented in standalone C 

•  two implementations: constant-time and non-constant-time  

• Wrapped RLWE key exchange into OpenSSL libcrypto 

• Added ciphersuites in OpenSSL libssl 



Implementation aspect 1:  

Polynomial arithmetic 
• Polynomial multiplication in Rq = Zq[x]/(x1024+1) done with Nussbaumer’s FFT: 

• Rather than working modulo degree-1024 polynomial with coefficients in Zq, 
work modulo: 
•  degree-256 polynomial whose coefficients are themselves polynomials modulo a degree-4 

polynomial, 
•  or degree-32 polynomials whose coefficients are polynomials modulo degree-8 polynomials 

whose coefficients are polynomials 
•  or … 

If 2m = rk, then

R[X]

hX2m + 1i
⇠=

⇣
R[Z]

hZr+1i

⌘
[X]

hXk � Zi



Implementation aspect 2:  

Sampling discrete Gaussians 

• Security proofs require “small” elements sampled within statistical distance 
2-128 of the true discrete Gaussian 

• We use inversion sampling: precompute table of cumulative probabilities 
•  For us: 52 elements, size = 10000 bits 

• Sampling each coefficient requires six 192-bit integer comparisons and there 
are 1024 coefficients 
•  51 • 1024 for constant time 

DZ,�(x) =
1

S

e

� x

2

2�2
for x 2 Z,� ⇡ 3.2, S = 8



Performance – math operations 



Performance – crypto operations 
Operation Client Server 
R-LWE key generation 0.9ms 0.9ms 
R-LWE Alice 0.5ms 
R-LWE Bob 0.1ms 
R-LWE total runtime 1.4ms 1.0ms 

ECDH nistp256 (OpenSSL) 0.8ms 0.8ms 

R-LWE 1.75× slower than ECDH 

constant-time implementation 
Intel Core i5 (4570R), 4 cores @ 2.7 GHz 
llvm 5.1 (clang 503.0.30) –O3 
OpenSSL 1.0.1f 



Performance – in TLS 

R-LWE 1.25× slower than ECDH 

R-LWE 1.08× slower than ECDH 

Ring-LWE adds 
about 8 KiB to 

handshake size 
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Performance – in TLS 

Hybrid = both ECDH and R-LWE key exchange 
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Summary 



Summary 

Caveat: lattice-based assumptions less studied, algorithms 
solving ring-LWE may improve, security parameter 
estimation may evolve. 

Ring-LWE ciphersuite with traditional signatures: 
•  Key sizes: not too bad (8 KiB overhead) 
•  Performance: small overhead (1.1–1.25×) within TLS. 
•  Integration into TLS: requires reordering messages, but 

otherwise okay. 



Related / subsequent work 
• Authenticated key exchange completely from RLWE 

(Zhang, Zhang, Ding, Snook, Dagdalen, EUROCRYPT 2015) 

• Hybrid RLWE + ECDH key exchange for Tor 
(Ghosh, Kate, 2015) 

• RLWE encryption on microcontrollers 
(de Clercq, Roy, Vercauteren, Verbauwhede, 2015) 

• NTRU-based key exchange for Tor 
(Schanck, Whyte, Zhang, 2015) 



Future work 
•  taking into account reduction tightness 
•  estimate based on best quantum algorithm for solving RLWE better attacks / 

parameter estimation 

•  assembly 
•  alternative FFT 
•  better sampling, … 

ring-LWE performance 
improvements 

•  basic DH directly from LWE 
•  eCK-secure key exchange 
•  error correcting codes? 

other post-quantum key 
exchange algorithms 

post-quantum 
authentication 



Links 
The paper 
•  http://eprint.iacr.org/2014/599 

Magma code: 
•  http://research.microsoft.com/

en-US/downloads/6bd592d7-
cf8a-4445-b736-1fc39885dc6e/
default.aspx 

Standalone C 
implementation 
•  https://github.com/dstebila/

rlwekex  

Integration into OpenSSL 
•  https://github.com/dstebila/

openssl-rlwekex 


