
Post-quantum key exchange
for the TLS protocol
from the ring learning with errors problem
Douglas Stebila

joint work with Joppe Bos (NXP),
Craig Costello & Michael Naehrig (Microsoft Research)

QUT Information Security colloquium • May 15, 2015

Background

Contemporary cryptography
TLS-‐ECDHE-‐RSA-‐AES128-‐GCM-‐SHA256	

Public-key
cryptography

RSA signatures

difficulty of
factoring

Elliptic curve
Diffie–Hellman
key exchange

difficulty of elliptic
curve discrete

logarithms

Symmetric
cryptography

AES SHA-2

Can be solved efficiently by a
large-scale quantum computer

Building quantum computers

Devoret, Schoelkopf. Science 339:1169–1174, March 2013.

Building quantum computers

Devoret, Schoelkopf. Science 339:1169–1174, March 2013.

Post-quantum / quantum-safe crypto

Code-based

•  McEliece

Hash-based

•  Merkle

signatures
•  Sphincs

Multivariate

•  multivariate

quadratic

Lattice-based

•  NTRU
•  learning with

errors
•  ring-LWE

No known exponential quantum speedup:

Lots of questions

Better classical or quantum attacks on post-quantum schemes?

What are the right parameter sizes?

Are the key sizes sufficiently small?

Can we do the operations sufficiently fast?

How do we integrate them into the existing infrastructure?

Lots of questions

Better classical or quantum attacks on post-quantum schemes?

What are the right parameter sizes?

Are the key sizes sufficiently small?

Can we do the operations sufficiently fast?

How do we integrate them into the existing infrastructure?

This talk: ring learning with errors

This talk: ring-LWE key agreement in TLS

• Signatures still done with traditional primitives (RSA/ECDSA)
•  we only need authentication to be secure now
•  benefit: use existing RSA-based PKI

• Key agreement done with ring-LWE

Premise: large-scale quantum computers don’t
exist right now, but we want to protect today’s

communications against tomorrow’s adversary.

Learning with errors

Solving systems of linear equations

Linear system problem: given blue, find red

Z7⇥4
13

secret
Z7⇥1
13Z4⇥1

13

4 1 11 10
5 5 9 5
3 9 0 10
1 3 3 2

12 7 3 4
6 5 11 4
3 3 5 0

4
8
1

10
4

12
9

× =

Solving systems of linear equations

Linear system problem: given blue, find red

Z7⇥4
13

secret
Z7⇥1
13Z4⇥1

13

4 1 11 10
5 5 9 5
3 9 0 10
1 3 3 2

12 7 3 4
6 5 11 4
3 3 5 0

4
8
1

10
4

12
9

6
9
11
11

Easily solved using

Gaussian elimination

(Linear Algebra 101)

× =

Learning with errors problem

Z7⇥4
13

random secret small noise
Z7⇥1
13 Z7⇥1

13Z4⇥1
13

4 1 11 10
5 5 9 5
3 9 0 10
1 3 3 2

12 7 3 4
6 5 11 4
3 3 5 0

4
7
2
11
5

12
8

6
9
11
11

0
-1
1
1
1
0
-1

looks random

× + =

Learning with errors problem

LWE problem: given blue, find red

Z7⇥4
13

random secret small noise looks random
Z7⇥1
13 Z7⇥1

13Z4⇥1
13

4 1 11 10
5 5 9 5
3 9 0 10
1 3 3 2

12 7 3 4
6 5 11 4
3 3 5 0

4
7
2
11
5

12
8

× + =

Toy example versus real-world example

Z7⇥4
13

4 1 11 10
5 5 9 5
3 9 0 10
1 3 3 2

12 7 3 4
6 5 11 4
3 3 5 0

2738 3842 3345 2979 …
2896 595 3607
377 1575

2760
…

640

256

640 × 256 × 12 bits = 245 KiB

Z640⇥256
4093

Ring learning with errors problem

Z7⇥4
13

random

4 1 11 10
10 4 1 11
11 10 4 1
1 11 10 4
4 1 11 10

10 4 1 11
11 10 4 1

Each row is the cyclic
shift of the row above

Ring learning with errors problem

Z7⇥4
13

random

4 1 11 10
3 4 1 11
2 3 4 1

12 2 3 4
9 12 2 3

10 9 12 2
11 10 9 12

Each row is the cyclic
shift of the row above
…
with a special wrapping rule:
x wraps to –x mod 13.

Ring learning with errors problem

Z7⇥4
13

random

4 1 11 10 Each row is the cyclic
shift of the row above
…
with a special wrapping rule:
x wraps to –x mod 13.

So I only need to tell you the first row.

Ring learning with errors problem

4 + 1x + 11x2 + 10x3

6 + 9x + 11x2 + 11x3

0 – 1x + 1x2 + 1x3

10 + 5x + 10x2 + 7x3

Z13[x]/hx4 + 1i

random

secret

small noise

×

+

=

Ring learning with errors problem

4 + 1x + 11x2 + 10x3

10 + 5x + 10x2 + 7x3

Z13[x]/hx4 + 1i

random

secret

small noise

Ring-LWE problem: given blue, find red

×

+

=

Decision ring learning with errors problem

4 + 1x + 11x2 + 10x3

6 + 9x + 11x2 + 11x3

0 – 1x + 1x2 + 1x3

10 + 5x + 10x2 + 7x3

Z13[x]/hx4 + 1i

random

secret

small noise

looks random

Decision ring-LWE problem: given blue,
distinguish green from random

×

+

=

Decision ring learning with errors problem with small
secrets

4 + 1x + 11x2 + 10x3

1 + 0x – 1x2 + 2x3

0 – 1x + 1x2 + 1x3

10 + 5x + 10x2 + 7x3

Z13[x]/hx4 + 1i

random

small secret

small noise

looks random

Decision ring-LWE problem: given blue,
distinguish green from random

×

+

=

Notation

• q: a prime

• n: a power of 2

• R = Z[X]/(Xn
+ 1): ring of polynomials in X with integer

coe�cients, polynomial reduction modulo Xn
+ 1

• Zq: integers modulo a prime q

• Rq = Zq[X]/(Xn
+ 1): ring of polynomials in X with integer

coe�cients modulo q, polynomial reduction modulo Xn
+ 1

Decision ring learning with errors problem

Definition. Let n,R, q and Rq be as above. Let � be a distribution

over R, and let s
$ �. Define O�,s as the oracle which does the

following:

1. Sample a
$ U(Rq), e

$ �,

2. Return (a, as+ e) 2 Rq ⇥Rq.

The decision R-LWE problem for n, q,� is to distinguish O�,s from

an oracle that returns uniform random samples from Rq ⇥ Rq. In

particular, if A is an algorithm, define the advantage

Adv

drlwe
n,q,�(A) =

���Pr
⇣
s

$ �;AO�,s
(·) = 1

⌘
� Pr

⇣
AU(Rq⇥Rq)

(·) = 1

⌘��� .

Hardness of DRLWE
Theory:
•  There is a poly-time reduction from solving approximate shortest-independent

vector problem (SIVP) on ideal lattices in R to solving DRLWE. [LPR10]

Practice:
• Assume the best way to solve DRLWE is to solve LWE.
• Solving LWE generally involves a lattice reduction problem.
• Albrecht et al. (eprint 2015/046) have hardness estimates.
•  To get 160-bit classical security (≥ 80-bit quantum security):

n = 1024, q = 232-1, chi = discrete Gaussian with parameter sigma = 8/sqrt(2π)

Key agreement

Basic ring-LWE-DH key agreement (unauthenticated)

public: “big” a in Rq = Zq[x]/(xn+1)

Alice

secret:
random “small” s, e in Rq

Bob

secret:
random “small” s’, e’ in Rq

b = a • s + e

b’ = a • s’ + e’

shared secret:
s • b’ = s • (a • s’ • e’) ≈ s • a • s’

shared secret:
b • s’ ≈ s • a • s’

•  Reformulation of Peikert’s R-LWE KEM (PQCrypto 2014)

These are only approximately equal => need rounding

Rounding
• Each coefficient of the polynomial is an integer modulo q
•  Treat each coefficient independently

Basic rounding
• Round either to 0 or q/2
•  Treat q/2 as 1

0

q/4

q/2

3q/4

round
to 0

round
to 1

This works
most of the time:

prob. failure 1/210.

Not good enough:
we need exact key

agreement.

Better rounding (Peikert)
• Bob says which of two regions the value is in: or

0

q/4

q/2

3q/4

If 0

q/4

q/2

3q/4

If 0

q/4

q/2

3q/4

Better rounding (Peikert)
•  If |u–v| ≤ q/8, then this always works.

•  For our parameters, probability |u-v| > q/8
is less than 2-128000.

• Security not affected: revealing or leaks no information

Exact ring-LWE-DH key agreement (unauthenticated)

public: “big” a in Rq = Zq[x]/(xn+1)

Alice

secret:
random “small” s, e in Rq

Bob

secret:
random “small” s’, e’ in Rq

b = a • s + e

b’ = a • s’ + e’, or

shared secret:
round(s • b’)

shared secret:
round(b • s’)

•  Reformulation of Peikert’s R-LWE KEM (PQCrypto 2014)

Ring-LWE-DH key agreement

Ring-LWE-DH key agreement

Secure if decision ring learning
with errors problem is hard.

Decision ring-LWE is hard if a related
lattice shortest vector problem is hard.

Implementation in TLS

Integration into TLS 1.2
New ciphersuite:
TLS-‐RLWE-‐SIG-‐AES128-‐GCM-‐
SHA256
• RSA / ECDSA signatures for
authentication

• Ring-LWE-DH for key
exchange

• AES for authenticated
encryption

Security within TLS 1.2
Model:
•  authenticated and confidential channel establishment (ACCE) (Jager et al.,

Crypto 2012)

Theorem:
•  signed ring-LWE ciphersuite is ACCE-secure if underlying primitives

(signatures, ring-LWE, authenticated encryption) are secure
•  Interesting technical detail for ACCE provable security people: need to move server’s

signature to end of TLS handshake because oracle-DH assumptions don’t hold for ring-
LWE

Implementation
• Basic RLWE implemented in standalone C

•  two implementations: constant-time and non-constant-time

• Wrapped RLWE key exchange into OpenSSL libcrypto

• Added ciphersuites in OpenSSL libssl

Implementation aspect 1:

Polynomial arithmetic
• Polynomial multiplication in Rq = Zq[x]/(x1024+1) done with Nussbaumer’s FFT:

• Rather than working modulo degree-1024 polynomial with coefficients in Zq,
work modulo:
•  degree-256 polynomial whose coefficients are themselves polynomials modulo a degree-4

polynomial,
•  or degree-32 polynomials whose coefficients are polynomials modulo degree-8 polynomials

whose coefficients are polynomials
•  or …

If 2m = rk, then

R[X]

hX2m + 1i
⇠=

⇣
R[Z]

hZr+1i

⌘
[X]

hXk � Zi

Implementation aspect 2:

Sampling discrete Gaussians

• Security proofs require “small” elements sampled within statistical distance
2-128 of the true discrete Gaussian

• We use inversion sampling: precompute table of cumulative probabilities
•  For us: 52 elements, size = 10000 bits

• Sampling each coefficient requires six 192-bit integer comparisons and there
are 1024 coefficients
•  51 • 1024 for constant time

DZ,�(x) =
1

S

e

� x

2

2�2
for x 2 Z,� ⇡ 3.2, S = 8

Performance – math operations

Performance – crypto operations
Operation Client Server
R-LWE key generation 0.9ms 0.9ms
R-LWE Alice 0.5ms
R-LWE Bob 0.1ms
R-LWE total runtime 1.4ms 1.0ms

ECDH nistp256 (OpenSSL) 0.8ms 0.8ms

R-LWE 1.75× slower than ECDH

constant-time implementation
Intel Core i5 (4570R), 4 cores @ 2.7 GHz
llvm 5.1 (clang 503.0.30) –O3
OpenSSL 1.0.1f

Performance – in TLS

R-LWE 1.25× slower than ECDH

R-LWE 1.08× slower than ECDH

Ring-LWE adds
about 8 KiB to

handshake size
1B 1KiB 10KiB 100KiB

0

100

200

300

400

500

600

700

ECDHE-ECDSA

RLWE-ECDSA

ECDHE-RSA
RLWE-RSA

HTTP payload size

C
o
n
n
ec
ti
o
n
s
p
er

se
co

n
d

Performance – in TLS

Hybrid = both ECDH and R-LWE key exchange

1B 1KiB 10KiB 100KiB
0

100

200

300

400

500

600

700

ECDHE-ECDSA

RLWE-ECDSA

HYBRID-ECDSA

ECDHE-RSA
RLWE-RSA

HYBRID-RSA

HTTP payload size

C
o
n
n
ec
ti
o
n
s
p
er

se
co

n
d

Summary

Summary

Caveat: lattice-based assumptions less studied, algorithms
solving ring-LWE may improve, security parameter
estimation may evolve.

Ring-LWE ciphersuite with traditional signatures:
•  Key sizes: not too bad (8 KiB overhead)
•  Performance: small overhead (1.1–1.25×) within TLS.
•  Integration into TLS: requires reordering messages, but

otherwise okay.

Related / subsequent work
• Authenticated key exchange completely from RLWE

(Zhang, Zhang, Ding, Snook, Dagdalen, EUROCRYPT 2015)

• Hybrid RLWE + ECDH key exchange for Tor
(Ghosh, Kate, 2015)

• RLWE encryption on microcontrollers
(de Clercq, Roy, Vercauteren, Verbauwhede, 2015)

• NTRU-based key exchange for Tor
(Schanck, Whyte, Zhang, 2015)

Future work
•  taking into account reduction tightness
•  estimate based on best quantum algorithm for solving RLWE better attacks /

parameter estimation

•  assembly
•  alternative FFT
•  better sampling, …

ring-LWE performance
improvements

•  basic DH directly from LWE
•  eCK-secure key exchange
•  error correcting codes?

other post-quantum key
exchange algorithms

post-quantum
authentication

Links
The paper
•  http://eprint.iacr.org/2014/599

Magma code:
•  http://research.microsoft.com/

en-US/downloads/6bd592d7-
cf8a-4445-b736-1fc39885dc6e/
default.aspx

Standalone C
implementation
•  https://github.com/dstebila/

rlwekex

Integration into OpenSSL
•  https://github.com/dstebila/

openssl-rlwekex

