USABILITY AND SECURITY OF GAZE-BASED GRAPHICAL GRID PASSWORDS

Majid Arianezhad, <u>Douglas Stebila</u>, Behzad Mozaffari

USEC

2013/04/01

Queensland University of Technology

USABILITY AND SECURITY OF GAZE-BASED GRAPHICAL GRID PASSWORDS

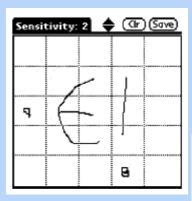
1. Are Android-like graphical grid passwords usable with gaze-based entry?

2. How can we measure the security of graphical grid passwords?

GRAPHICAL PASSWORDS

SEE FANTASTIC SURVEY PAPER BY BIDDLE, CHIASSON, VAN OORSCHOT, ACM COMPUTING SURVEYS 2012

Recall-based


- User must recall and enter a secret drawing from memory
- Can be free form or grid-based

Recognition-based

 User must recognize a few personal objects from a set of objects

Cued-recall

 User is given an image cue and must recall and enter points or pattern

ENTRY METHODS

Mouse

- commonplace input method
- mouse movements easily observed ("shoulder surfing")

Touch

- easy and intuitive
- vulnerable to "smudge attacks"

Gaze

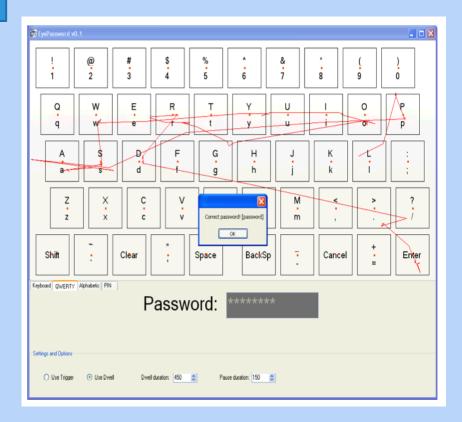
- requires specialized, expensive input equipment
- more resistant to shoulder surfing
- possibly more suitable for persons with disabilities

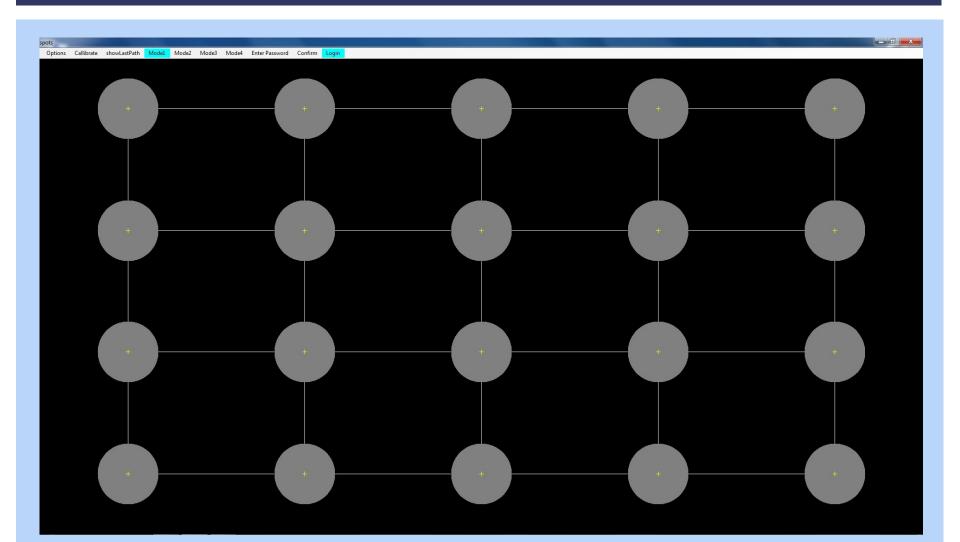
GAZE-BASED GRAPHICAL PASSWORDS

CUED GAZE-POINTS (CGP)

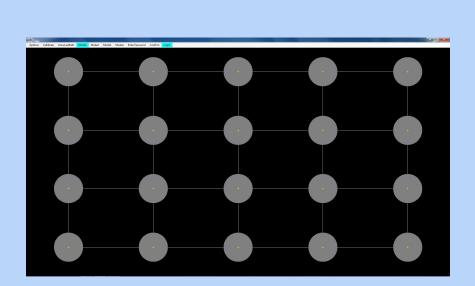
- Forget, Chiasson, Biddle CHI 2010
- Cued-recall
- Gaze-based variant of Cued Click Points

EYEPASSSHAPES


- De Luca, Denzel, Hussmann SOUPS 2009
- Recall
- Grid with adjacent movements only

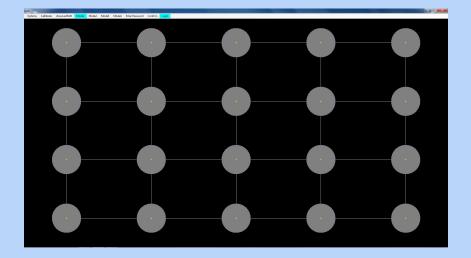

GAZE-BASED GRAPHICAL PASSWORDS

EYEPASSWORD

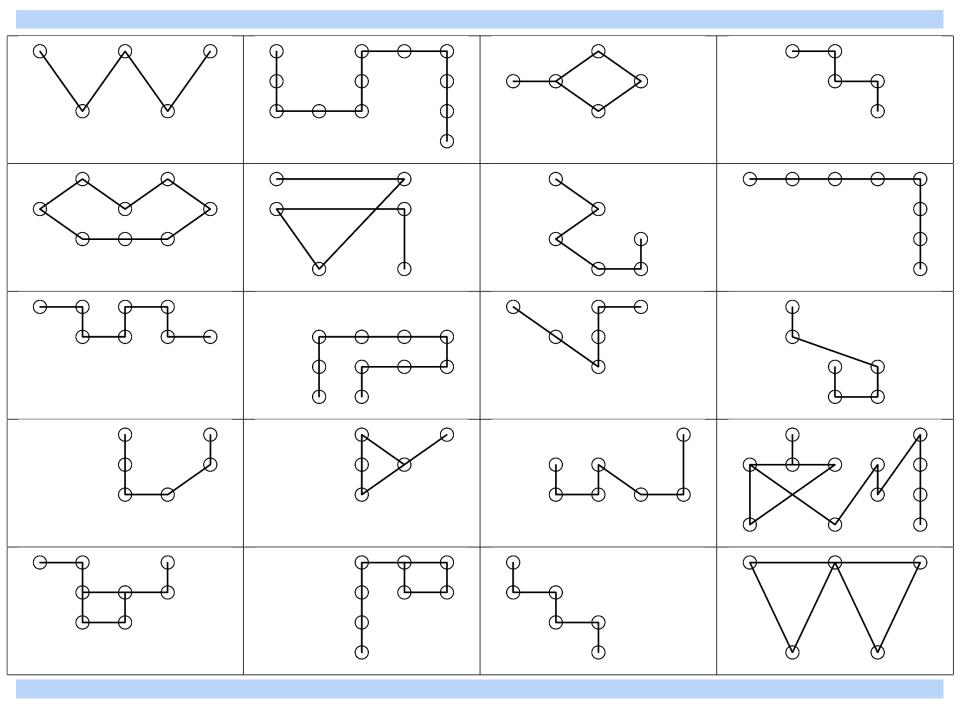

- Kumar, Garfinkel, Boneh, Winograd
 SOUPS 2007
- On-screen keyboard

GAZE-BASED GRAPHICAL GRID PASSWORDS

BASIC SCHEME


[Calibration]

- **1.** Gaze at first point
- 2. Press spacebar
- 3. Gaze at next point for >0.5 seconds
- 4. Gaze at next point for >0.5 seconds


5. ..

- 6. Gaze at last point for >0.5 seconds
- 7. Press spacebar

BASIC SCHEME

- No visual feedback of points selected
- Subsequent points need not be adjacent
- Cannot use same point twice in a row but can revisit later

VARIANTS

	$\begin{array}{c} 0 & 0 & 0 & 0 \\ \oplus & 0 & 0 & 0 \\ 0 & 0 & 0 & \otimes \\ 0 & 0 & 0 & 0 \end{array}$		
Basic scheme	Cued start/end points	Grid with holes	Sparse grid
5x4 grid	5x4 grid	5x4 grid	6x6 grid
	Must start at +	Cannot use	Lots of holes
	and end at x	some points	

USABILITY AND SECURITY OF GAZE-BASED GRAPHICAL GRID PASSWORDS

1. Are Android-like graphical grid passwords usable with gaze-based entry?

2. How can we measure the security of graphical grid passwords?

USABILITY OF GAZE-BASED GRAPHICAL GRID PASSWORDS

Are Androidlike graphical grid passwords usable with gaze-based entry?

GENERAL METHODOLOGY

TASKS

- 1. For 3 of the 4 schemes:
 - **1.** Create password
 - 2. Confirm password
 - **3.** [Distraction task]
 - 4. Login
- 2. Final login with scheme 1
- 3. Survey

22 participants total

REPORTED DATA

- Successful
 - confirm / login / final login

on

- 1st try / ≤ 3 tries
- Confirm / login errors
- Total time (incl. errors)
- Successful time
- Ease of use

PASSWORD ENTRY SUCCESS RATE

		$\begin{array}{c} 0 \\ \oplus \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		
<u>Confirm</u> 1 st try ≤ 3 tries	91% 95%	64% 91%	67% 98%	38% 69%
<u>Login</u> 1 st try ≤ 3 tries	73% 91%	91% 95%	89% 100%	54% 77%
<u>Final Login</u> (10 mins. later) 1 st try	45%			
≤ 3 tries	55%			

PASSWORD ENTRY SUCCESS RATE

		Cued Gaze Points CGP T-51	EyePassShapes	EyePassword
<u>Confirm</u> 1 st try ≤ 3 tries	91% 95%	67% 82%		
<u>Login</u> 1 st try ≤ 3 tries	73% 91%	73% 93%	86%	97%
<u>Final Login</u> (10 mins. later) 1 st try ≤ 3 tries	45% 55%		(5 days later) 57%	

PASSWORD ENTRY TIME & EASE OF USE

		$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		
Total login time (sec) (incl. errors)	21.4	18.0	19.5	17.4
Login time (sec) per point (not incl. errors)	1.68	1.60	1.98	1.26
Ease of use (Likert scale, 1=very easy, 4=very hard)	1.91	1.95	2.44	2.31

PASSWORD ENTRY TIME

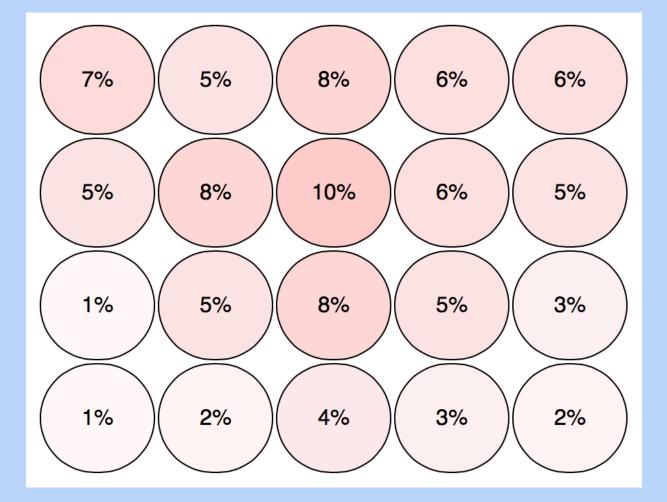
		Cued Gaze Points CGP T-51	EyePassShapes	EyePassword
Total login time (sec) (incl. errors)	21.4	36.7 (incl. username entry)		
Login time (sec) per point (not incl. errors)	1.68		1.56	1.08

USABILITY RESULTS

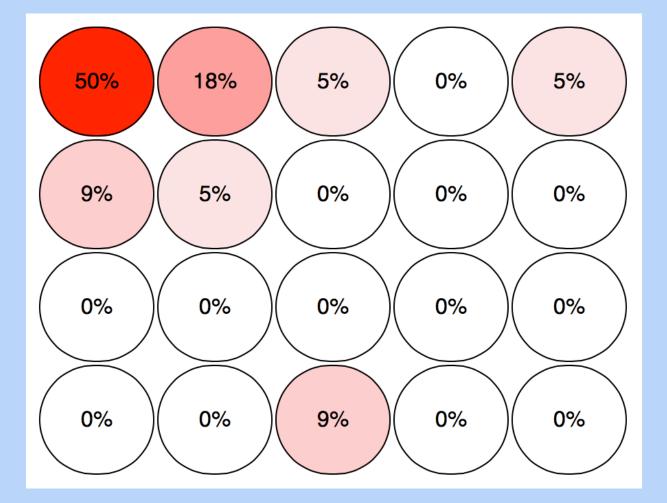
- Gaze-based graphical grid passwords generally competitive with other gaze-based schemes.
- Long-term memorability poor.
- Limited understanding of overall usability of gaze-based password schemes due to limits of lab-based studies.
- Importance of reporting as much data as possible.
- Open question: confounding effects of remembering multiple passwords over time.

SECURITY OF GRAPHICAL GRID PASSWORDS

How can we measure the security of graphical grid passwords?

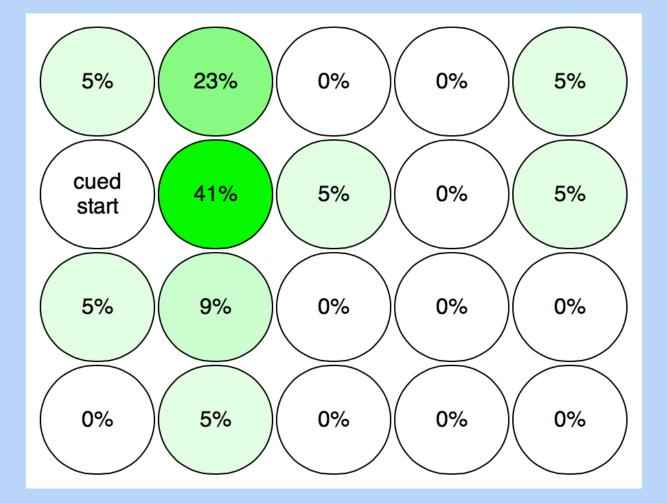

SECURITY METRICS

TEXTUAL PASSWORDS


- dictionary word
- character frequency
- digraph frequency
- repeated characters

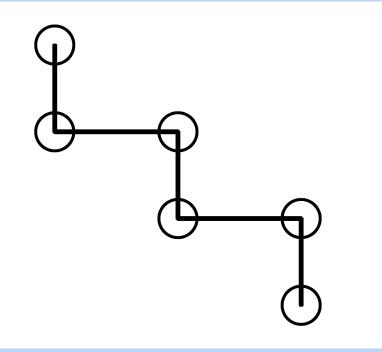
GRID PATTERNS

- common pattern
- point frequency
 - first, last, all
- stroke frequency
 direction & length
- symmetry

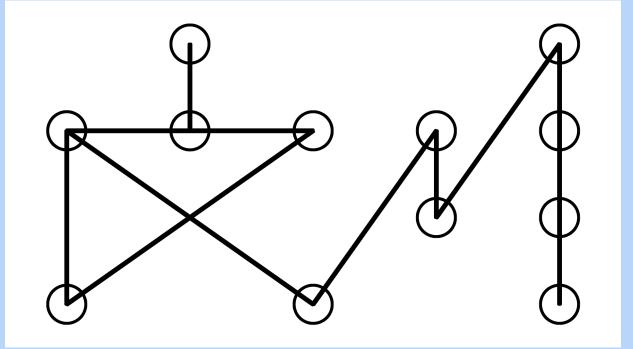

POINT FREQUENCY Scheme 1 All points

POINT FREQUENCY Scheme 1 First point

POINT FREQUENCY Scheme 1 Last point



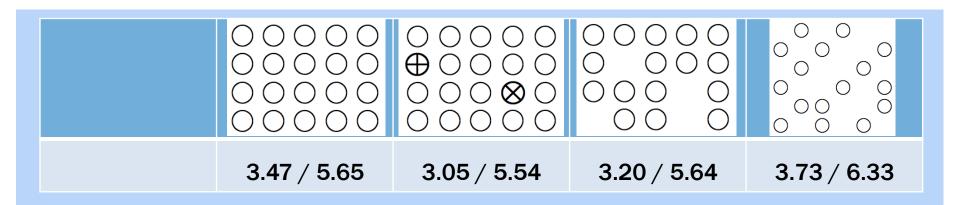
POINT FREQUENCY Scheme 2 First point


BINARY ENTROPY OF POINT FREQUENCY

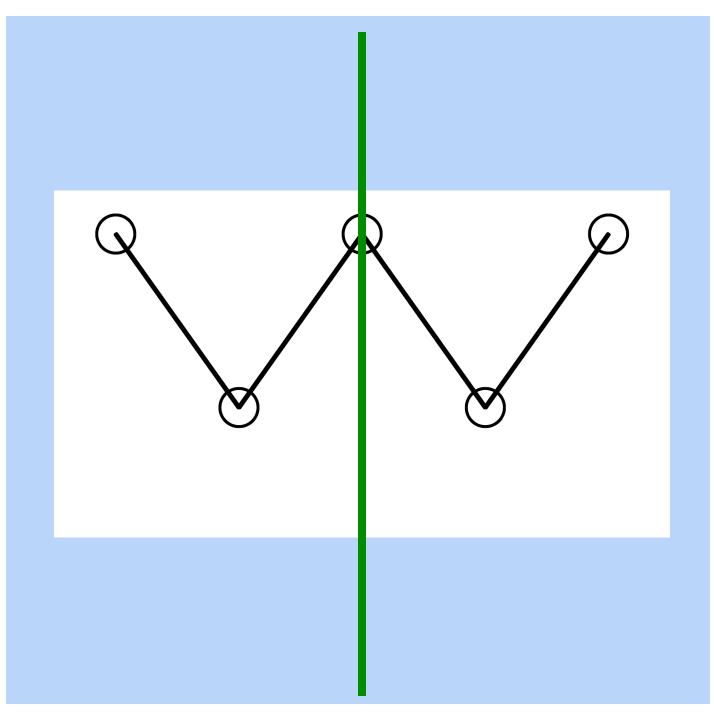
VS. IDEAL

	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{c} 0 \\ \oplus \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		
All	4.11 / 4.32	3.87 / 4.17	3.75 / 4.00	3.95 / 4.00
First	2.18 / 4.32	2.54 / 4.25	2.50 / 4.00	2.78 / 4.00
Last	3.54 / 4.32	2.63 / 4.25	2.50 / 4.00	2.14 / 4.00

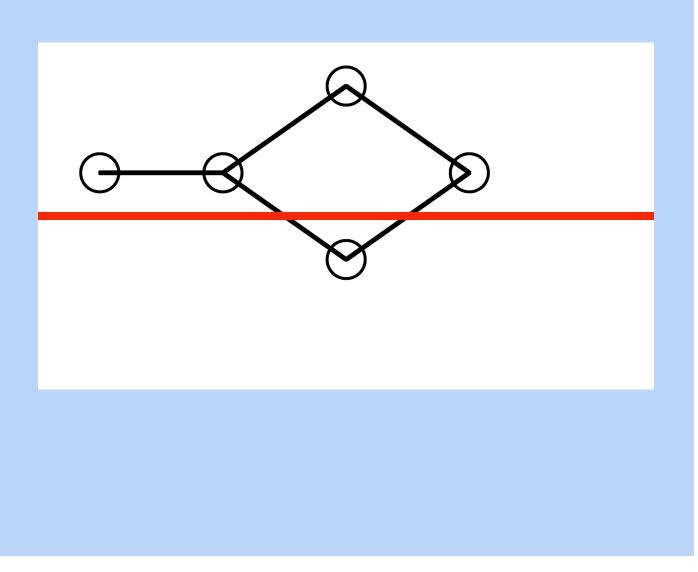
STROKE FREQUENCY Example, Scheme 1

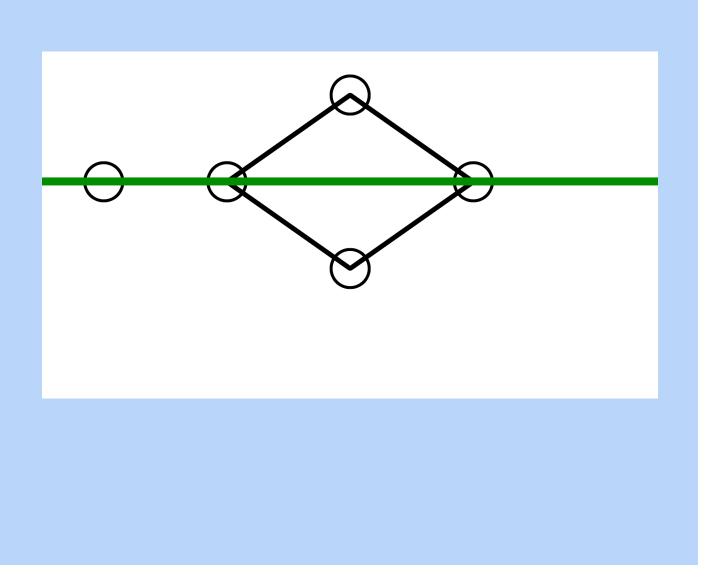

STROKE FREQUENCY Example, Scheme 1

STROKE FREQUENCY, SCHEME 1

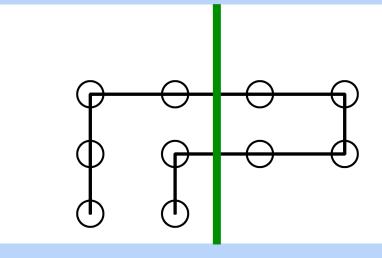

	$4 \leftarrow$	$3 \leftarrow$	$2 \leftarrow$	$1 \leftarrow$		$1 \rightarrow$	$2 \rightarrow$	$3 \rightarrow$	$4 \rightarrow$
$3\uparrow$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$2\uparrow$	0.0000	0.0000	0.0000	0.0000	0.0207	0.0000	0.0069	0.0069	0.0000
$1\uparrow$	0.0000	0.0000	0.0069	0.0207	0.0690	0.0345	0.0000	0.0069	0.0000
	0.0000	0.0000	0.0138	0.1310	0.0000	0.2276	0.0069	0.0000	0.0000
$1\downarrow$	0.0000	0.0138	0.0276	0.0276	0.2414	0.0621	0.0138	0.0138	0.0000
$2\downarrow$	0.0000	0.0000	0.0000	0.0069	0.0069	0.0138	0.0069	0.0000	0.0000
$3\downarrow$	0.0000	0.0000	0.0000	0.0000	0.0138	0.0000	0.0000	0.0000	0.0000

BINARY ENTROPY OF STROKE DIRECTION & LENGTH


VS. IDEAL


Values for uniformly random passwords calculated from 100,000 uniformly randomly generated samples of length 7.

HORIZONTAL SYMMETRY


VERTICAL SYMMETRY

VERTICAL SYMMETRY

SYMMETRY SCORE

- For each possible vertical (or horizontal) axis:
 - Fold along the axis
 - Count number of password points that match on both sides of the fold
 - Divide by total number of password points
- Take maximum

0.8

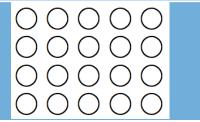
SYMMETRY SCORE (HIGHER = MORE SYMMETRY)

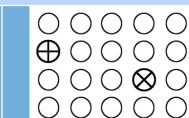
		$\begin{array}{c} 0 \\ \oplus \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		
Vertical	0.71 / 0.58	0.70 / 0.55	0.66 / 0.57	0.48 / 0.47
Horizontal	0.66 / 0.57	0.69 / 0.59	0.63 / 0.56	0.43 / 0.46

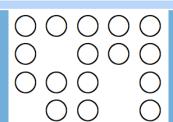
Values for uniformly random passwords calculated from 100,000 uniformly randomly generated samples of length 7.

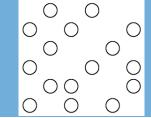
SEARCH SPACE ESTIMATE 7-POINT PASSWORD

		$\begin{array}{c} 0 \\ \oplus \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		
Theoretical	2 ^{30.2}	2 ^{29.4}	2 ^{28.0}	2 ^{28.0}
Point entropy	2 ^{28.8}	2 ^{27.1}	2 ^{26.3}	2 ^{27.7}
First + strokes	2 ^{23.0}	2 ^{20.8}	2 ^{21.7}	2 ^{25.2}


CONCLUSIONS


USABILITY AND SECURITY OF GAZE-BASED GRAPHICAL GRID PASSWORDS


1. Are Android-like graphical grid passwords usable with gaze-based entry?


2. How can we measure the security of graphical grid passwords?

SCHEME-SPECIFIC CONCLUSIONS

Generally good success rate, comparable with existing schemes

Lower success rate

Entry times comparable with existing schemes

Best point entropy		
Bad first entropy Best last entropy	Best first entropy	
Okay stroke entropy		Best stroke entropy
		Most asymmetric
Best overall		

USABILITY AND SECURITY OF GAZE-BASED GRAPHICAL GRID PASSWORDS MAJID ARIANEZHAD, <u>DOUGLAS STEBILA</u>, BEHZAD MOZAFFARI

USABILITY

- Our schemes generally competitive in terms of success rate and time.
- Difficult to compare gazebased password schemes at present.

SECURITY

- Proposed metrics for graphical grid passwords:
 - first/last/all point entropy
 - stroke direction & length entropy
 - vertical/horizontal symmetry
- User-generated grid passwords often have poor first point and stroke entropy; some symmetry.
- Grid variants do not improve password quality very much.