

Anonymity and one-way authentication in key exchange protocols

Douglas Stebila

Queensland University of Technology

Joint work with Ian Goldberg (University of Waterloo) and Berkant Ustaoglu (Izmir Institute of Technology)

Monday September 17, 2012

Designs, Codes and Cryptography; online first, http://dx.doi.org/10.1007/s10623-011-9604-z

I.G. acknowledges funding from NSERC and Mprime.

Outline

Key exchange in Tor

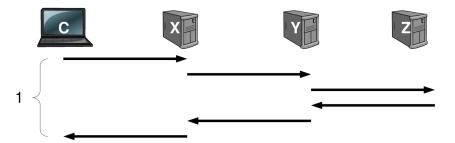
Security goals

Security model

Protocols

Conclusions

Key exchange in Tor


•

Tor circuit establishment

To establish a Tor circuit, a client Alice does the following:

- 1. Alice picks a Tor node X and establishes an encrypted authenticated channel with X
- 2. Alice picks a second Tor node Y and establishes an encrypted authenticated channel with Y, tunnelled via X
- 3. Alice picks a third Tor node Z and establishes an encrypted authenticated channel with Z, **tunnelled via** Y
- k. Alice relays her communication through nodes X, Y, Z, ..., W, with the final **exit node** W relaying communication to/from the destination address.

Tor circuit establishment

Øverlier and Syverson, PET 2007.

Tor authentication protocol (TAP)

A trusted PKI allows Alice to determine node n's public encryption key pk_n

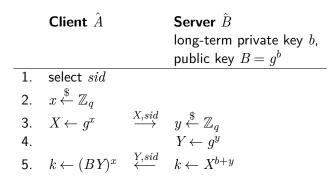
- 1. Alice picks $x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
- 2. Alice sends $c \leftarrow \operatorname{Enc}_{pk_B}(g^x)$ to Bob.
- 3. Bob computes $m \leftarrow \text{Dec}_{sk_B}(c)$, range checks m, picks $y \stackrel{\$}{\leftarrow} \mathbb{Z}_q$, and sends $a \leftarrow g^y$ and $b \leftarrow f(m^y)$ to Alice
- 4. Alice range checks a and that $b = f(a^x)$
- 5. Shared session key: $a^x = m^y$

Security of TAP

- ► Assume II is an IND-CPA-secure, reaction-resistant encryption scheme and CDH in *G* is hard.
- ► TAP is secure:²
 - ► There exists no p.p.t. algorithm M such that, for a random output (pk, sk) of Π.KeyGen and a random exponent x, M(pk, g, Enc_{pk}(g^x)) = (a, a^x) for some a with non-negligible probability.

Douglas Stebila » Anonymity and one-way authentication in key exchange protocols

²Goldberg, PET 2006.


Security of TAP

- ► Assume II is an IND-CPA-secure, reaction-resistant encryption scheme and CDH in *G* is hard.
- ► TAP is secure:²
 - ► There exists no p.p.t. algorithm M such that, for a random output (pk, sk) of Π.KeyGen and a random exponent x, M(pk, g, Enc_{pk}(g^x)) = (a, a^x) for some a with non-negligible probability.
- ► Non-standard security definition.
 - Customized to protocol construction.
 - ► Key recovery, not session key indistinguishability.

Douglas Stebila » Anonymity and one-way authentication in key exchange protocols

²Goldberg, PET 2006.

"Fourth protocol" of Øverlier and Syverson (PET 2007)

Proposed for, but never used, in Tor circuit establishment.

Insecurity of Øverlier and Syverson's "fourth protocol"

	Client \hat{A}		Attacker \hat{M} Bob's public key $B = g^b$
1.	select <i>sid</i>		
2.	$x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$		
3.	$X \leftarrow g^x$		$r \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
4.		$\xleftarrow{Y',sid}$	$Y' \leftarrow B^{-1}g^r = g^{r-b}$
5.	$k \leftarrow (BY')^x = g^{(b+r-b)x} = g^{rx}$		$k \leftarrow X^r = g^{rx}$

Security goals

Key agreement security models (BR93, CK01, eCK, ...) typically two-way (mutually) authenticated

- Key agreement security models (BR93, CK01, eCK, ...) typically two-way (mutually) authenticated
- Many real-world protocols only one-way authenticated:
 - Tor; vast majority of TLS usage

- Key agreement security models (BR93, CK01, eCK, ...) typically two-way (mutually) authenticated
- Many real-world protocols only one-way authenticated:
 - Tor; vast majority of TLS usage

One-way \neq **one-flow**:

- One-flow AKE establishes a session key with a single message from the client to the server.
- One-way AKE gives server-to-client authentication but not client-to-server authentication

- Key agreement security models (BR93, CK01, eCK, ...) typically two-way (mutually) authenticated
- Many real-world protocols only one-way authenticated:
 - Tor; vast majority of TLS usage

One-way \neq **one-flow**:

- One-flow AKE establishes a session key with a single message from the client to the server.
- One-way AKE gives server-to-client authentication but not client-to-server authentication

One-way AKE as either:

- ► Restriction of standard two-way AKE to one-way setting
- ► Extension of public-key encryption to include forward secrecy

What motivation does a party not receiving authentication promises have for using secrecy?

What motivation does a party not receiving authentication promises have for using secrecy?

- A server provides the same level/type of service to each unauthenticated client:
 - Medical advice to anonymous patients the same whether request came encrypted or not.
 - Search engine responses the same whether request came over HTTP or HTTPS.

What motivation does a party not receiving authentication promises have for using secrecy?

- ► A server provides the same level/type of service to each unauthenticated client:
 - Medical advice to anonymous patients the same whether request came encrypted or not.
 - Search engine responses the same whether request came over HTTP or HTTPS.

 $\mathsf{secrecy} \leq \mathsf{authentication}$

What motivation does a party not receiving authentication promises have for using secrecy?

- A server provides the same level/type of service to each unauthenticated client:
 - Medical advice to anonymous patients the same whether request came encrypted or not.
 - Search engine responses the same whether request came over HTTP or HTTPS.

 $\mathsf{secrecy} \leq \mathsf{authentication}$

But...

- ► Doctors required to preserve patient-doctor confidentiality even with unauthenticated patients ⇒ exclusivity.
- ► ISPs may eavesdrop on search engine queries/responses for marketing purposes.

► Anonymity: party is not identifiable (within a set of parties)

 $^{^{3}{\}tt Pfitzmann \ and \ Hansen. \ http://dud.inf.tu-dresden.de/Anon_Terminology.shtml}$

- Anonymity: party is not identifiable (within a set of parties)
- Unlinkability: cannot determine if two items of interest (e.g., sessions) are related

³Pfitzmann and Hansen. http://dud.inf.tu-dresden.de/Anon_Terminology.shtml

- ► Anonymity: party is not identifiable (within a set of parties)
- Unlinkability: cannot determine if two items of interest (e.g., sessions) are related
- ► Undetectability: cannot determine if something exists or not

³Pfitzmann and Hansen. http://dud.inf.tu-dresden.de/Anon_Terminology.shtml

- ► Anonymity: party is not identifiable (within a set of parties)
- Unlinkability: cannot determine if two items of interest (e.g., sessions) are related
- ► Undetectability: cannot determine if something exists or not

Related properties:

Identity hiding: identity of a party never communicated in the clear but eventually made known to peer

³Pfitzmann and Hansen. http://dud.inf.tu-dresden.de/Anon_Terminology.shtml

- ► Anonymity: party is not identifiable (within a set of parties)
- Unlinkability: cannot determine if two items of interest (e.g., sessions) are related
- ► Undetectability: cannot determine if something exists or not

Related properties:

- Identity hiding: identity of a party never communicated in the clear but eventually made known to peer
- Deniability: identity of a party not necessarily kept secret, but party's participation in a session cannot be conclusively proven

³Pfitzmann and Hansen. http://dud.inf.tu-dresden.de/Anon_Terminology.shtml

Security model

Session execution

- Parties have long-term (static) and session-specific (ephemeral) key pairs and certificates associated to long-term keys
- \blacktriangleright Parties assign a locally unique session identifier Ψ to each session
- ▶ Parties output a tuple (sk, pid, \vec{v}) for each session, where
 - ► *sk* is a session key
 - $\blacktriangleright \ pid$ is a party identifier or the anonymous symbol \circledast
 - $ec{v} = (ec{v}_1, ec{v}_2, \dots)$ is a vector of vectors of public values

 Send^P(params, pid) → (Ψ, msg): Activate party P to start a new key exchange session.

- Send^P(params, pid) → (Ψ, msg): Activate party P to start a new key exchange session.
- ► Send^P(Ψ, msg) → msg': Send a message to party P.

- Send^P(params, pid) → (Ψ, msg): Activate party P to start a new key exchange session.
- Send^P(Ψ, msg) → msg': Send a message to party P.
- RevealNext^P \rightarrow X:

Learn the next public key value X that will be used by P.

- Send^P(params, pid) → (Ψ, msg): Activate party P to start a new key exchange session.
- Send^P(Ψ, msg) → msg': Send a message to party P.
- ► RevealNext^P → X: Learn the next public key value X that will be used by P.
- Partner^P(X) $\rightarrow x$:

Learn the secret value x for party P's key pair (x, X).

- Send^P(params, pid) → (Ψ, msg): Activate party P to start a new key exchange session.
- ► Send^P(Ψ, msg) → msg': Send a message to party P.
- RevealNext^P \rightarrow X:

Learn the next public key value X that will be used by P.

- ▶ Partner^P(X) → x: Learn the secret value x for party P's key pair (x, X).
- SessionKeyReveal $^{P}(\Psi) \rightarrow sk$

- Send^P(params, pid) → (Ψ, msg): Activate party P to start a new key exchange session.
- ► Send^P(Ψ, msg) → msg': Send a message to party P.
- RevealNext^P \rightarrow X:

Learn the next public key value X that will be used by P.

- ▶ Partner^P(X) → x: Learn the secret value x for party P's key pair (x, X).
- SessionKeyReveal $^{P}(\Psi) \rightarrow sk$
- EstablishCertificate

- $\mathsf{Test}(P, \Psi) \to sk$:
 - 1. Stop if $\Psi.sk = \bot$ or $\Psi.pid = \circledast$.
 - 2. Choose $b \stackrel{\$}{\leftarrow} \{0, 1\}$
 - 3. If b = 1: return $\Psi.sk$
 - 4. If b = 0: return random key of same length

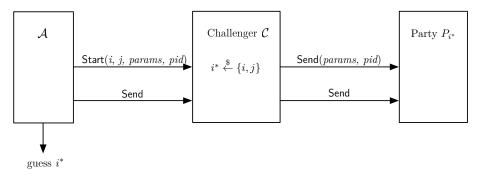
- ► $\operatorname{Test}(P, \Psi) \to sk$:
 - 1. Stop if $\Psi.sk = \bot$ or $\Psi.pid = \circledast$.
 - 2. Choose $b \stackrel{\$}{\leftarrow} \{0, 1\}$
 - 3. If b = 1: return $\Psi.sk$
 - 4. If b = 0: return random key of same length

• Ψ is **one-way-AKE-fresh** if both:

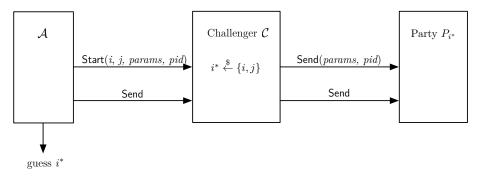
- 1. for every \vec{v}_j in $\Psi.\vec{v},$ there is at least one element $X\in\vec{v}_j$ where adversary is not a partner to X
- 2. no SessionKeyReveal $^{P}(\Psi')$ at $P=\Psi.pid$ where $\Psi'.\vec{v}=\Psi.\vec{v}$

- ► $\text{Test}(P, \Psi) \rightarrow sk$:
 - 1. Stop if $\Psi.sk = \bot$ or $\Psi.pid = \circledast$.
 - 2. Choose $b \stackrel{\$}{\leftarrow} \{0, 1\}$
 - 3. If b = 1: return $\Psi.sk$
 - 4. If b = 0: return random key of same length

• Ψ is **one-way-AKE-fresh** if both:

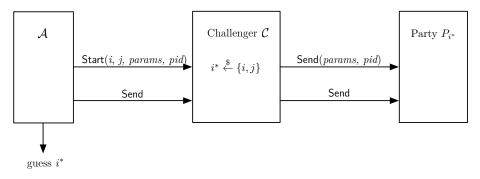

- 1. for every \vec{v}_j in $\Psi.\vec{v},$ there is at least one element $X\in\vec{v}_j$ where adversary is not a partner to X
- 2. no SessionKeyReveal^P(Ψ') at $P = \Psi.pid$ where $\Psi'.\vec{v} = \Psi.\vec{v}$
- ► A protocol is **one-way-AKE-secure** if for all p.p.t. *M* the advantage that *M* guesses *b* in a fresh session is negligible.

- ► $\operatorname{Test}(P, \Psi) \to sk$:
 - 1. Stop if $\Psi.sk = \bot$ or $\Psi.pid = \circledast$.
 - 2. Choose $b \stackrel{\$}{\leftarrow} \{0, 1\}$
 - 3. If b = 1: return $\Psi.sk$
 - 4. If b = 0: return random key of same length


• Ψ is **one-way-AKE-fresh** if both:

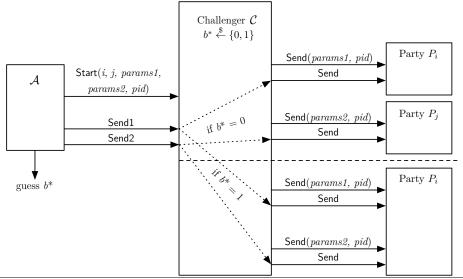
- 1. for every \vec{v}_j in $\Psi.\vec{v},$ there is at least one element $X\in\vec{v}_j$ where adversary is not a partner to X
- 2. no SessionKeyReveal^P(Ψ') at $P = \Psi.pid$ where $\Psi'.\vec{v} = \Psi.\vec{v}$
- ► A protocol is **one-way-AKE-secure** if for all p.p.t. *M* the advantage that *M* guesses *b* in a fresh session is negligible.
- Forward secrecy?

Guess which of two parties is participating in the key exchange.



Guess which of two parties is participating in the key exchange.

► **Goal:** Guess *i*^{*} with non-negligible advantage.


Guess which of two parties is participating in the key exchange.

- ► **Goal:** Guess *i*^{*} with non-negligible advantage.
- ► Can issue RevealNext, Partner, and SessionKeyReveal to challenger
- ► Can't issue queries related to challenge session to original parties

Unlinkability

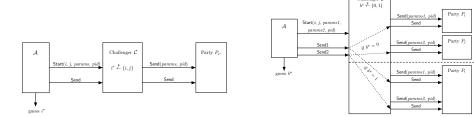
Determine whether two items of interest are related or not.

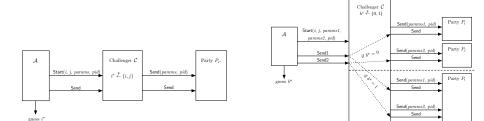
Unlinkability

Determine whether two items of interest are related or not.

• **Goal:** Guess b^* with non-negligible advantage.

Unlinkability


Determine whether two items of interest are related or not.


- ► **Goal:** Guess *b*^{*} with non-negligible advantage.
- Can issue RevealNext1, RevealNext2, Partner1, Partner2, SessionKeyReveal1, and SessionKeyReveal2 to challenger
- ► Can't issue queries related to challenge session to original parties

Unlinkability

Challenger \mathcal{C}

One-way anonymity = Unlinkability

One-way anonymity \implies unlinkability:

• Adversary starts unlinkability game with parties P_i and P_j

One-way anonymity \implies unlinkability:

- Adversary starts unlinkability game with parties P_i and P_j
- ► Simulator creates two sessions using anonymity challenger:
 - 1. One session with P_i
 - 2. One session with anonymity challenger for P_i and P_j

One-way anonymity \implies unlinkability:

- Adversary starts unlinkability game with parties P_i and P_j
- ► Simulator creates two sessions using anonymity challenger:
 - 1. One session with P_i
 - 2. One session with anonymity challenger for P_i and P_j
- If anonymity challenger uses P_i : unlinkability simulator uses P_i and P_i
- If anonymity challenger uses P_j : unlinkability simulator uses P_i and P_j

One-way anonymity \implies unlinkability:

- Adversary starts unlinkability game with parties P_i and P_j
- ► Simulator creates two sessions using anonymity challenger:
 - 1. One session with P_i
 - 2. One session with anonymity challenger for P_i and P_j
- If anonymity challenger uses P_i : unlinkability simulator uses P_i and P_i
- If anonymity challenger uses P_j : unlinkability simulator uses P_i and P_j
- Unlinkability adversary guesses b

 \implies one-way anonymity simulator guesses \langle

$$\begin{cases} i, & \text{if } b = 0 \\ j, & \text{if } b = 1 \end{cases}$$

Unlinkability \implies one-way anonymity:

- Adversary starts one-way anonymity game with parties P_i and P_j
- Simulator uses unlinkability challenger for P_i and P_j :
 - 1. Adversary's queries are relayed to unlinkability challenger's second party
- ▶ If unlinkability challenger uses P_i : anonymity simulator uses P_i
- If unlinkability challenger uses P_j : anonymity simulator uses P_j
- ► Anonymity adversary guesses *i*′

 $\implies \text{ unlinkability simulator guesses } \begin{cases} 1, & \text{if } i' = i \\ 0, & \text{if } i' = i \end{cases}$

Protocols

One-way-authenticated TLS

Session key security

- Mutually authenticated:
 - ► Jonsson and Kaliski (CRYPTO 2002): RSA encryption security
 - ► Morrissey, Smart, Warinschi (ASIACRYPT 2008): truncated TLS
 - ► Gajek et al. (ProvSec 2008): UC security of TLS_DHE
 - ► Jager et al. (CRYPTO 2012): mutual ACCE security of TLS_DHE

One-way-authenticated TLS

Session key security

- Mutually authenticated:
 - ► Jonsson and Kaliski (CRYPTO 2002): RSA encryption security
 - ► Morrissey, Smart, Warinschi (ASIACRYPT 2008): truncated TLS
 - ► Gajek et al. (ProvSec 2008): UC security of TLS_DHE
 - ► Jager et al. (CRYPTO 2012): mutual ACCE security of TLS_DHE
- One-way authenticated:
 - ► Morrissey, Smart, Warinschi (ASIACRYPT 2008): truncated TLS
 - ► Gajek et al. (ProvSec 2008): UC security of TLS_DHE
 - TLS_RSA and TLS_DHE could be proven secure in our model, although neither with forward secrecy

One-way-authenticated TLS

Anonymity

Lots of values in TLS could leak identifying information:

- ClientHello: supported TLS versions, cipher suites, algorithms, extensions
- ClientHello.client_random.gmt_unix_time: current time in seconds
- ServerHello.session_id: many clients abort if they receive a session identifier that already exists in its cache

Proposed protocol: ntor

	Client \hat{A}		Server \hat{B} long-term private key b , public key $B = g^b$
1.	$x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$		
2.	$X \leftarrow g^{\hat{x}}$		
3.	$\Psi_a \leftarrow \mathtt{H}_{sid}(X)$	$\xrightarrow{X,\Psi_a}$	$y \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
4.			$Y \leftarrow g^{y}$
5.			$\Psi_b \leftarrow \mathtt{H}_{sid}(Y)$
6.			$(sk', sk) \leftarrow \mathbf{H}(X^y, X^b, \hat{B}, X, Y)$
7.		$\overset{Y,t_b,\Psi_b}{\longleftarrow}$	$t_b \leftarrow \mathtt{H}_{mac}(sk', \hat{B}, Y, X)$
8.	$(sk', sk) \leftarrow \operatorname{H}(Y^x, B^x, \hat{B}, X, Y)$		
9.	verify t_b		
10.	output $(sk, \hat{B}, \vec{v} = (X, (Y, B)))$		$\texttt{output}~(\mathit{sk},\circledast, \vec{v} = (\mathit{X},(\mathit{Y},\mathit{B})))$

Analysis of ntor

- ► One-way AKE security: If H and H_{mac} are random oracles and H_{sid} is collision-resistant, and the gap Diffie-Hellman assumption holds.
- One-way anonymity: Unconditionally.

⁴Backes, Kate, Mohammadi. http://www.infsec.cs.uni-saarland.de/-mohammadi/paper/owake.pdf

Analysis of ntor

- ► One-way AKE security: If H and H_{mac} are random oracles and H_{sid} is collision-resistant, and the gap Diffie-Hellman assumption holds.
- One-way anonymity: Unconditionally.

Protocol	Efficiency (client)		Efficiency (server)		authentication	security
	Off-line	On-line	Off-line	On-line		
DH	1	1	1	1	none	insecure
Signed-DH	1	1+sigver	1	1+sign	one-way	no FS
ØS	1	1	1	1	one-way	insecure
MQV	1	1.17 (1.5)	1	1.17 (1.5)	mutual	non-tight
UM	1	2	1	2	mutual	limited
ntor	1	2	1	1.33	one-way	tight
Ace ⁴	2	1.08 (1.17)	1	1.08 (1.17)	one-way	tight

Douglas Stebila » Anonymity and one-way authentication in key exchange protocols

⁴Backes, Kate, Mohammadi. http://www.infsec.cs.uni-saarland.de/~mohammadi/paper/owake.pdf

Conclusions

Summary

- ► Insecurity of previously proposed protocol of Øverlier and Syverson
- Security definitions for
 - ► one-way AKE
 - ► anonymity
 - unlinkability
- ► Equivalence of anonymity and unlinkability
- New protocol ntor with security arguments

Open questions

- Most appropriate protocol for deployment?
- Impact of weak randomness on anonymity?
- Equivalence or inequivalence of anonymity and unlinkability in other settings?
- Pseudonymity in AKE: is it just mutual AKE with throw-away credentials?
- ► One-way AKE as public-key encryption with forward secrecy?