
Efficient Modular Exponentiation-based Puzzles
for Denial-of-Service Protection

Jothi Rangasamy, Douglas Stebila, Lakshmi Kuppusamy,
Colin Boyd, and Juan González-Nieto

Information Security Institute
Queensland University of Technology, Brisbane, Queensland, Australia

Friday, December 2, 2011
ICISC 2011

Supported by Australia-India Strategic Research Fund project TA020002.

Summary
▶ A useful mechanism for protection from denial of service attacks is

client puzzles, which are somewhat hard problems that require a
certain amount of time to solve.

▶ Important properties include provable difficulty, non-parallelizability,
deterministic solving time, and linear granularity.

▶ Generating puzzles and verifying solutions should be very inexpensive.
▶ We propose a new RSA-based non-parallelizable client puzzle that

is up to 30 times faster for verification compared to previous
non-parallelizable puzzles and much closer to the speed of hash-based
puzzles.

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 2 / 20

Types of denial of service attacks
▶ Brute force attacks: attacker generates sufficiently many legitimate

requests to overload a server’s resources. Does not require special
knowledge of protocol specification or implementation.

▶ Distributed denial of service (DDoS) attacks
▶ Ping floods

▶ Semantic attacks: attacker tries to exploit vulnerabilities of
particular network protocols or applications. Requires special
knowledge of protocol specification and implementation.

▶ Buffer overflow attacks
▶ TCP SYN flooding / IP spoofing attacks

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 3 / 20

Prevention techniques
Try to identify malicious traffic:

▶ address filtering to block false addresses or addresses making too
many requests;

▶ bandwidth management by routers and switches;
▶ packet inspection: look for patterns of bad requests;
▶ intrusion-prevention systems: look for signatures of attacks.

Difficult to distinguish real users’ legitimate requests from attacker’s
legitimately-formed requests in brute force attacks.

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 4 / 20

Gradual authentication
▶ Principle for denial-of-service resistance proposed by Meadows
▶ Idea is to use cheap and low-security authentication initially
▶ Gradually put more effort into authentication if earlier stages succeed
▶ A typical progression might be to implement cookies first, then

puzzles, then strong cryptographic authentication.

▶ Cookies provide proof of reachability
▶ Puzzles provide proof of work
▶ Signatures provide strong cryptographic authentication

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 5 / 20

Puzzles
The server generates a challenge and the client is required to solve a
moderately hard puzzle based on this challenge.
Puzzles should be:

▶ easy to generate,
▶ not require stored state,
▶ provably hard to solve, and
▶ easy to verify.

Puzzles may be either computation-bound or memory-bound. We only
look at the former.

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 6 / 20

Puzzle definition
Formally, a client puzzle is a tuple of algorithms:

▶ Setup(1k): Return public parameters and server secret s.
▶ GenPuz(s, Q, str): Generate a puzzle of difficulty Q for session string

str.
▶ FindSoln(str, puz): Find a solution for session string str and the given

puzzle puz.
▶ VerSoln(s, str, puz, soln): Check if soln is a valid solution for puzzle

puz and session string str.
GenPuz and VerSoln should be inexpensive.

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 7 / 20

Puzzle security properties
▶ Difficulty: it should be moderately hard to solve a puzzle

(computation-bound or memory-bound)

▶ Unforgeability: it should not be possible for the adversary to
generate valid puzzles

▶ Non-parallelizability: it should not be possible to have multiple
computers solve a puzzle in less time than a single computer could

▶ Tuneable difficulty: can provide puzzles with different difficulty
levels, preferably with linear granularity

▶ Useful puzzles: the work done in solving a puzzle can be used for
another purpose

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 8 / 20

Puzzle security properties
▶ Difficulty: it should be moderately hard to solve a puzzle

(computation-bound or memory-bound)
▶ Unforgeability: it should not be possible for the adversary to

generate valid puzzles

▶ Non-parallelizability: it should not be possible to have multiple
computers solve a puzzle in less time than a single computer could

▶ Tuneable difficulty: can provide puzzles with different difficulty
levels, preferably with linear granularity

▶ Useful puzzles: the work done in solving a puzzle can be used for
another purpose

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 8 / 20

Puzzle security properties
▶ Difficulty: it should be moderately hard to solve a puzzle

(computation-bound or memory-bound)
▶ Unforgeability: it should not be possible for the adversary to

generate valid puzzles
▶ Non-parallelizability: it should not be possible to have multiple

computers solve a puzzle in less time than a single computer could

▶ Tuneable difficulty: can provide puzzles with different difficulty
levels, preferably with linear granularity

▶ Useful puzzles: the work done in solving a puzzle can be used for
another purpose

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 8 / 20

Puzzle security properties
▶ Difficulty: it should be moderately hard to solve a puzzle

(computation-bound or memory-bound)
▶ Unforgeability: it should not be possible for the adversary to

generate valid puzzles
▶ Non-parallelizability: it should not be possible to have multiple

computers solve a puzzle in less time than a single computer could
▶ Tuneable difficulty: can provide puzzles with different difficulty

levels, preferably with linear granularity

▶ Useful puzzles: the work done in solving a puzzle can be used for
another purpose

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 8 / 20

Puzzle security properties
▶ Difficulty: it should be moderately hard to solve a puzzle

(computation-bound or memory-bound)
▶ Unforgeability: it should not be possible for the adversary to

generate valid puzzles
▶ Non-parallelizability: it should not be possible to have multiple

computers solve a puzzle in less time than a single computer could
▶ Tuneable difficulty: can provide puzzles with different difficulty

levels, preferably with linear granularity
▶ Useful puzzles: the work done in solving a puzzle can be used for

another purpose

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 8 / 20

Hash-based puzzle (Juels–Brainard)
Based on finding partial pre-image of hash function H.
Difficulty parameter is Q.

PuzGen ▶ Choose random x← {0, 1}k
▶ Set x = x′︸︷︷︸

Q

∥ x′′︸︷︷︸
k−Q

▶ Set z = H(x,Q, str)
▶ Puzzle is (x′′, z)

FindSoln Find y such that H(y ∥ x′′,Q, str) = z
VerSoln Check that z ?

= H(y ∥ x′′,Q, str)

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 9 / 20

Properties of hash-based puzzles

Merits
▶ Generation and verification very efficient
▶ Easily tuneable by giving ‘hints’ (range for solution)

Limitations
▶ Seem hard to make non-parallelisable
▶ Proofs of difficulty are only available in the random oracle model

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 10 / 20

Time-lock puzzles of Rivest–Shamir–Wagner (RSW)
▶ RSA-based puzzle proposed in 1996
▶ Sending information into the future
▶ Uses RSA modulus n = pq.
▶ Difficulty parameter is Q.

PuzGen ▶ Choose random a
▶ Puzzle consists of (n, a,Q)

FindSoln Compute y = a2Q mod n
VerSoln ▶ Compute b = 2Q mod ϕ(n)

▶ Check that y ?
= ab mod n

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 11 / 20

Properties of RSW puzzle

Merits
▶ Believed to be non-parallelisable - only known way to find y is to

square a repeatedly Q times.
▶ Simple construction

Limitations
▶ Verification requires exponentiation
▶ No proof of difficulty

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 12 / 20

Karame–Čapkun puzzle (ESORICS 2010)
▶ RSW puzzle is relatively expensive to verify. VerSoln requires full

modular exponentiation.
▶ Karame and Čapkun use short RSA private exponent. Consequently

RSA public exponent must be very large.
▶ Puzzle is essentially to compute RSA encryption of random value.
▶ Verification is decryption with short exponent and checking.

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 13 / 20

Karame–Čapkun construction
n is RSA modulus, d is short RSA private exponent of length k (such as
k = 80), public exponent is e > n2.
Difficulty parameter is Q.

PuzGen ▶ Choose random X
▶ K = e− (Q mod ϕ(n))
▶ Puzzle is (n,X,Q,K)

FindSoln Compute y1 = XQ mod n; y2 = XK mod n
VerSoln Check that (y1y2)d mod n ?

= X

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 14 / 20

Properties of Karame–Čapkun construction

Merits
▶ Verification much improved over RSW puzzle, by about |n|/2k times
▶ Has proof of difficulty (relative to RSW puzzle)

Limitations
▶ Verification still requires exponentiation
▶ Parallelisability not so tight

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 15 / 20

BPV Generator
▶ Boyko, Peinado, Venkatesan, Eurocrypt’98
▶ Method for efficiently computing random RSA encryptions efficiently

with pre-computation.
Let k, ℓ, and N, with N ≥ ℓ ≥ 1, be parameters. Let n be an RSA modulus
and u an exponent.

▶ Pre-processing run once. Generate N random integers
α1, α2, . . . , αN ← Z∗

n and compute βi ← αiu mod n for each i. Return
a table τ ← ((αi, βi))N

i=1.
▶ Whenever a pair (x, xu mod n) is needed: choose a random set

S ⊆ {1, . . . ,N} of size ℓ. Compute x←
∏

j∈S αj mod n and
X←

∏
j∈S βj mod n and return (x,X).

Statistical distance between this distribution and random is 2−
1
2(log (N

ℓ)+1).

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 16 / 20

A new non-parallelisable puzzle (RSA Puz)
n is RSA modulus, public exponent is e = 3.
Difficulty parameter is Q.

Setup ▶ Set d = 3−1 mod ϕ(n)
▶ Set u = d− (2Q mod ϕ(n))
▶ Compute BPV pre-processing to obtain table with

N = 2500 and ℓ = 4 (gives distance 2−20).
PuzGen ▶ Use BPV algorithm to computer new (x,X = xu) pair

▶ Puzzle is (n, x,Q)

FindSoln Compute y = x2Q mod n
VerSoln Check that (X · y)3 mod n ?

= x

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 17 / 20

Properties of RSA Puz

Merits
▶ Verification only requires a few multiplications
▶ Non-parallelisable
▶ Has proof of difficulty (relative to RSW puzzle) in Chen et al. model

(ASIACRYPT 2009)

Limitations
▶ Preprocessing can be somewhat costly

,
Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 18 / 20

Sample timings

512-bit modulus, k = 56
Puzzle Setup (ms) GenPuz (µs) FindSoln (s) VerSoln (µs)

Difficulty: Q = 1 million
RSW puz 13.92 4.80 1.54 474.68
KC puz 11.52 8.37 1.59 263.35

RSA puz 1401.14 16.66 1.54 14.75
Difficulty: Q = 10 million

RSW puz 49.99 4.80 15.17 474.83
KC puz 28.95 8.37 15.18 265.28

RSA puz 1419.78 16.66 15.34 14.53
Difficulty: Q = 100 million

RSW puz 416.29 4.81 157.10 470.61
KC puz 218.76 8.35 160.97 259.39

RSA puz 1609.83 16.76 158.22 14.88

A typical hash-based puzzle has GenPuz = 5.92µs and VerSoln = 3.77µs.
,

Rangasamy, Stebila, Kuppusamy, Boyd, González-Nieto (QUT) » Efficient Modular Exponentiation-based Puzzles 19 / 20

Efficient Modular Exponentiation-based Puzzles for
Denial-of-Service Protection

Jothi Rangasamy, Douglas Stebila,
Lakshmi Kuppusamy, Colin Boyd,

and Juan González-Nieto
stebila@qut.edu.au

▶ A useful mechanism for protection from denial of service attacks is
client puzzles, which are somewhat hard problems that require a
certain amount of time to solve.

▶ Important properties include provable difficulty, non-parallelizability,
deterministic solving time, and linear granularity.

▶ Generating puzzles and verifying solutions should be very inexpensive.
▶ We propose a new RSA-based non-parallelizable client puzzle that

is up to 30 times faster for verification compared to previous
non-parallelizable puzzles and much closer to the speed of hash-based
puzzles.

