

Efficient Modular Exponentiation-based Puzzles for Denial-of-Service Protection

Jothi Rangasamy, <u>Douglas Stebila</u>, Lakshmi Kuppusamy, Colin Boyd, and Juan González-Nieto

Information Security Institute Queensland University of Technology, Brisbane, Queensland, Australia

> Friday, December 2, 2011 ICISC 2011

Supported by Australia-India Strategic Research Fund project TA020002.

Summary

- ► A useful mechanism for protection from denial of service attacks is client puzzles, which are somewhat hard problems that require a certain amount of time to solve.
- Important properties include provable difficulty, non-parallelizability, deterministic solving time, and linear granularity.
- ► Generating puzzles and verifying solutions should be very inexpensive.
- We propose a new RSA-based non-parallelizable client puzzle that is up to 30 times faster for verification compared to previous non-parallelizable puzzles and much closer to the speed of hash-based puzzles.

Types of denial of service attacks

- Brute force attacks: attacker generates sufficiently many legitimate requests to overload a server's resources. Does not require special knowledge of protocol specification or implementation.
 - Distributed denial of service (DDoS) attacks
 - Ping floods
- Semantic attacks: attacker tries to exploit vulnerabilities of particular network protocols or applications. Requires special knowledge of protocol specification and implementation.
 - Buffer overflow attacks
 - ► TCP SYN flooding / IP spoofing attacks

Prevention techniques

- Try to identify malicious traffic:
 - address filtering to block false addresses or addresses making too many requests;
 - bandwidth management by routers and switches;
 - ► packet inspection: look for patterns of bad requests;
 - ► intrusion-prevention systems: look for signatures of attacks.
- Difficult to distinguish real users' legitimate requests from attacker's legitimately-formed requests in brute force attacks.

Gradual authentication

- ► Principle for denial-of-service resistance proposed by Meadows
- ► Idea is to use cheap and low-security authentication initially
- ► Gradually put more effort into authentication if earlier stages succeed
- ► A typical progression might be to implement cookies first, then puzzles, then strong cryptographic authentication.
- ► **Cookies** provide proof of reachability
- Puzzles provide proof of work
- ► Signatures provide strong cryptographic authentication

Puzzles

The server generates a challenge and the client is required to solve a moderately hard puzzle based on this challenge. Puzzles should be:

- easy to generate,
- not require stored state,
- provably hard to solve, and
- ► easy to verify.

Puzzles may be either **computation-bound** or **memory-bound**. We only look at the former.

Puzzle definition

Formally, a client puzzle is a tuple of algorithms:

- Setup (1^k) : Return public parameters and server secret *s*.
- ► GenPuz(s, Q, str): Generate a puzzle of difficulty Q for session string str.
- ► FindSoln(*str, puz*): Find a solution for session string *str* and the given puzzle *puz*.
- VerSoln(s, str, puz, soln): Check if soln is a valid solution for puzzle puz and session string str.

GenPuz and VerSoln should be inexpensive.

 Difficulty: it should be moderately hard to solve a puzzle (computation-bound or memory-bound)

- Difficulty: it should be moderately hard to solve a puzzle (computation-bound or memory-bound)
- Unforgeability: it should not be possible for the adversary to generate valid puzzles

- Difficulty: it should be moderately hard to solve a puzzle (computation-bound or memory-bound)
- Unforgeability: it should not be possible for the adversary to generate valid puzzles
- Non-parallelizability: it should not be possible to have multiple computers solve a puzzle in less time than a single computer could

- Difficulty: it should be moderately hard to solve a puzzle (computation-bound or memory-bound)
- Unforgeability: it should not be possible for the adversary to generate valid puzzles
- Non-parallelizability: it should not be possible to have multiple computers solve a puzzle in less time than a single computer could
- Tuneable difficulty: can provide puzzles with different difficulty levels, preferably with linear granularity

- Difficulty: it should be moderately hard to solve a puzzle (computation-bound or memory-bound)
- Unforgeability: it should not be possible for the adversary to generate valid puzzles
- Non-parallelizability: it should not be possible to have multiple computers solve a puzzle in less time than a single computer could
- Tuneable difficulty: can provide puzzles with different difficulty levels, preferably with linear granularity
- Useful puzzles: the work done in solving a puzzle can be used for another purpose

Hash-based puzzle (Juels-Brainard)

Based on finding partial pre-image of hash function H. Difficulty parameter is Q.

PuzGen • Choose random $x \leftarrow \{0, 1\}^k$ • Set $x = \underbrace{x'}_{Q} \parallel \underbrace{x''}_{k-Q}$ • Set $z = H(x, Q, \operatorname{str})$ • Puzzle is (x'', z)FindSoln Find y such that $H(y \parallel x'', Q, \operatorname{str}) = z$

VerSoln Check that $z \stackrel{?}{=} H(y \parallel x'', Q, \text{str})$

Properties of hash-based puzzles

Merits

- Generation and verification very efficient
- ► Easily tuneable by giving 'hints' (range for solution)

Limitations

- ► Seem hard to make non-parallelisable
- ► Proofs of difficulty are only available in the random oracle model

Time-lock puzzles of Rivest–Shamir–Wagner (RSW)

- ► RSA-based puzzle proposed in 1996
- ► Sending information into the future
- Uses RSA modulus n = pq.
- Difficulty parameter is Q.

PuzGen ► Choose random *a*

► Puzzle consists of (*n*, *a*, *Q*)

FindSoln Compute $y = a^{2^Q} \mod n$

- **VerSoln** \blacktriangleright Compute $b = 2^Q \mod \phi(n)$
 - Check that $y \stackrel{?}{=} a^b \mod n$

Properties of RSW puzzle

Merits

- Believed to be non-parallelisable only known way to find y is to square a repeatedly Q times.
- Simple construction

Limitations

- Verification requires exponentiation
- ► No proof of difficulty

Karame–Čapkun puzzle (ESORICS 2010)

- RSW puzzle is relatively expensive to verify. VerSoln requires full modular exponentiation.
- Karame and Čapkun use short RSA private exponent. Consequently RSA public exponent must be very large.
- ► Puzzle is essentially to compute RSA encryption of random value.
- ► Verification is decryption with short exponent and checking.

Karame–Čapkun construction

n is RSA modulus, *d* is short RSA private exponent of length *k* (such as k = 80), public exponent is $e > n^2$. Difficulty parameter is *Q*.

PuzGen ► Choose random X ► $K = e - (Q \mod \phi(n))$ ► Puzzle is (n, X, Q, K)FindSoln Compute $y_1 = X^Q \mod n$; $y_2 = X^K \mod n$ VerSoln Check that $(y_1y_2)^d \mod n \stackrel{?}{=} X$

Properties of Karame–Čapkun construction

Merits

- Verification much improved over RSW puzzle, by about |n|/2k times
- ► Has proof of difficulty (relative to RSW puzzle)

Limitations

- Verification still requires exponentiation
- Parallelisability not so tight

BPV Generator

- ► Boyko, Peinado, Venkatesan, Eurocrypt'98
- Method for efficiently computing random RSA encryptions efficiently with pre-computation.

Let k, ℓ , and N, with $N \ge \ell \ge 1$, be parameters. Let n be an RSA modulus and u an exponent.

- ▶ **Pre-processing** run once. Generate *N* random integers $\alpha_1, \alpha_2, \ldots, \alpha_N \leftarrow \mathbb{Z}_n^*$ and compute $\beta_i \leftarrow \alpha_i^u \mod n$ for each *i*. Return a table $\tau \leftarrow ((\alpha_i, \beta_i))_{i=1}^N$.
- ▶ Whenever a pair $(x, x^u \mod n)$ is needed: choose a random set $S \subseteq \{1, ..., N\}$ of size ℓ . Compute $x \leftarrow \prod_{j \in S} \alpha_j \mod n$ and $X \leftarrow \prod_{j \in S} \beta_j \mod n$ and return (x, X).

Statistical distance between this distribution and random is $2^{-\frac{1}{2}(\log{\binom{N}{\ell}}+1)}$.

A new non-parallelisable puzzle (RSA Puz)

n is RSA modulus, public exponent is e = 3. Difficulty parameter is Q.

Setup	▶ Set $d = 3^{-1} \mod \phi(n)$			
	• Set $u = d - (2^Q \mod \phi(n))$			
	 Compute BPV pre-processing to obtain table with 			
	${\it N}=2500$ and $\ell=4$ (gives distance 2^{-20}).			
PuzGen	• Use BPV algorithm to computer new $(x, X = x^u)$ pair			
	• Puzzle is (n, x, Q)			
FindSoln Compute $y = x^{2^Q} \mod n$				
VerSoln	VerSoln Check that $(X \cdot y)^3 \mod n \stackrel{?}{=} x$			

Properties of RSA Puz

Merits

- Verification only requires a few multiplications
- ► Non-parallelisable
- ► Has proof of difficulty (relative to RSW puzzle) in Chen et al. model (ASIACRYPT 2009)

Limitations

Preprocessing can be somewhat costly

Sample timings

	512-bit modulus, $k = 56$				
Puzzle	Setup (ms)	GenPuz (μ s)	FindSoln (s)	VerSoln (μ s)	
Difficulty: $Q = 1$ million					
RSW puz	13.92	4.80	1.54	474.68	
KC puz	11.52	8.37	1.59	263.35	
RSA puz	1401.14	16.66	1.54	14.75	
Difficulty: $Q = 10$ million					
RSW puz	49.99	4.80	15.17	474.83	
KC puz	28.95	8.37	15.18	265.28	
RSA puz	1419.78	16.66	15.34	14.53	
Difficulty: $Q = 100$ million					
RSW puz	416.29	4.81	157.10	470.61	
KC puz	218.76	8.35	160.97	259.39	
RSA puz	1609.83	16.76	158.22	14.88	

A typical hash-based puzzle has GenPuz = $5.92 \,\mu s$ and VerSoln = $3.77 \,\mu s$.

Efficient Modular Exponentiation-based Puzzles for Denial-of-Service Protection

Jothi Rangasamy, <u>Douglas Stebila</u>, Lakshmi Kuppusamy, Colin Boyd, and Juan González-Nieto stebila@qut.edu.au

- ► A useful mechanism for protection from denial of service attacks is client puzzles, which are somewhat hard problems that require a certain amount of time to solve.
- Important properties include provable difficulty, non-parallelizability, deterministic solving time, and linear granularity.
- ► Generating puzzles and verifying solutions should be very inexpensive.
- We propose a new RSA-based non-parallelizable client puzzle that is up to 30 times faster for verification compared to previous non-parallelizable puzzles and much closer to the speed of hash-based puzzles.