
Stronger Difficulty Notions for Client Puzzles
and Denial-of-Service-Resistant Protocols

Douglas Stebila, Lakshmi Kuppusamy, Jothi Rangasamy,
Colin Boyd, and Juan Gonzalez Nieto

Information Security Institute
Queensland University of Technology, Brisbane, Queensland, Australia

Thursday, February 17, 2011

Session ID: CRYP-304
Session Classification: Advanced

Summary
Denial of service attacks aim to overload servers and disrupt access
to resources.

Client puzzles aim to defend against denial of service attacks by
requiring a client to solve a moderately hard problem before being
granted access to a resource.

We describe weaknesses in existing definitions of puzzle difficulty and
give improved definitions – in the interactive and non-interactive
settings – more appropriate to powerful adversaries.

We also provide a generic way to use puzzles to protect any
cryptographic protocol from denial of service attacks.

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 2 / 25

Background
1. What are denial of service attacks?

2. How can we defend against them?

Background » What is DoS?

Cyber attacks
I Estonia (April 2007)

I Georgia (August 2008)

I United States and South Korea (July 2009)

I Mastercard, Visa (December 2010)

I Google (June 2009): News searches sparked by Michael Jackson’s
death were initially mistook for an automated DoS attack.

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 4 / 25

Background » What is DoS?

Cyber attacks
I Estonia (April 2007)

I Georgia (August 2008)

I United States and South Korea (July 2009)

I Mastercard, Visa (December 2010)

I Google (June 2009): News searches sparked by Michael Jackson’s
death were initially mistook for an automated DoS attack.

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 4 / 25

Background » What is DoS?

Types of denial of service attacks
I Brute force attacks: attacker generates sufficiently many

legitimate requests to overload a server’s resources. Does not
require special knowledge of protocol specification or
implementation.

I Distributed denial of service (DDoS) attacks
I Ping floods

I Semantic attacks: attacker tries to exploit vulnerabilities of
particular network protocols or applications. Requires special
knowledge of protocol specification and implementation.

I Buffer overflow attacks
I TCP SYN flooding / IP spoofing attacks

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 5 / 25

Background » Defending against DoS

Prevention techniques
Try to identify malicious traffic:

I address filtering to block false addresses or addresses making too
many requests;

I bandwidth management by routers and switches;

I packet inspection: look for patterns of bad requests;

I intrusion-prevention systems: look for signatures of attacks.

Difficult to distinguish real users’ legitimate requests from attacker’s
legitimately-formed requests in brute force attacks.

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 6 / 25

Background » Defending against DoS

Gradual authentication
Basic idea: as a server builds up more confidence in the client, it is
willing to commit more resources.

Cookies
(reachability)

↓
Puzzles

(proof of work)
↓

Digital signatures
(strong authentication)

Listed in order of:

I increasing confidence in client

I increasing cost to server
,

Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 7 / 25

Background » Defending against DoS

Puzzles
The server generates a challenge and the client is required to solve a
moderately hard puzzle based on this challenge.

Puzzles should be:

I easy to generate,

I not require stored state,

I provably hard to solve, and

I easy to verify.

Puzzles may be either computation-bound or memory-bound. We
only look at the former.

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 8 / 25

Background » Defending against DoS

Puzzle security properties in the literature
I Difficulty: it should be moderately hard to solve a puzzle

(computation-bound or memory-bound).

I Unforgeability: it should not be possible to generate valid
puzzles.

I Non-parallelizability: it should not be possible to have multiple
computers solve a puzzle in less time than a single computer
could.

I Tuneable difficulty: can provide puzzles with different difficulty
levels.

I Useful puzzles: the work done in solving a puzzle can be used for
another purpose.

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 9 / 25

Modelling puzzle difficulty
1. Weaknesses in existing definitions

2. Stronger definitions: interactive and non-interactive

3. Examples

Computational models for puzzles

Puzzle definition
Formally, a client puzzle is a tuple of algorithms:

I Setup(1k): Return public parameters and server secret s.

I GenPuz(s, d, str): Generate a puzzle of difficulty d for session
string str.

I FindSoln(str, puz): Find a solution for session string str and the
given puzzle puz.

I VerSoln(s, str, puz, soln) Check if soln is a valid solution for puzzle
puz and session string str.

GenPuz and VerSoln should be very inexpensive.

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 11 / 25

Computational models for puzzles

SPuz: puzzle based on Juels–Brainard1 construction

Client Server
Req−−−−−−−→

Choose random x← {0, 1}k
x = x′︸︷︷︸

d

∥ x′′︸︷︷︸
k−d

y = H(x, d, str)
x′′, y

←−−−−−−−
Find z such that
H(z ∥ x′′, d, str) = y

str, x′′, y, z
−−−−−−−→

y
?
= H(z ∥ x′′, d, str)

1
Juels and Brainard. A cryptographic countermeasure against connection depletion attacks. NDSS 1999.

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 12 / 25

Computational models for puzzles » Bristol definition

Puzzle difficulty: the Bristol definition2

I Experiment parameters: puzzle difficulty d, security parameter k,
and puzzle scheme P.

I Adversary interacts with a challenger which runs Setup(1k) and
provides access to two oracles:

I CreatePuzSoln(str): Set puz ← GenPuz(s, d, str) and find a valid
solution soln for puz. Return (puz, soln).

I Test(str∗): Return puz∗ ← GenPuz(s, d, str∗). Only a single Test
query is allowed.

I Goal: output soln∗ such that VerSoln(puz∗, soln∗) is true.

2
Chen, Morrissey, Smart, Warinschi. Security notions and generic constructions for client puzzles. ASIACRYPT 2009.

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 13 / 25

Computational models for puzzles » Bristol definition

Puzzle difficulty: the Bristol definition
A client puzzle scheme is said to be ϵk,d()-difficult if

Pr(A wins) ≤ ϵk,d(t)

for all probabilistic algorithms A running in time at most t, where
ϵk,d(t) is a family of functions monotonically increasing in t.

I Example: might have ϵk,d(t) = t/d+ negl(k).

I Why monotonically increasing? Should be impossible to solve a
puzzle more easily by taking less time.

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 14 / 25

Computational models for puzzles » Bristol definition

Limitation in Bristol definition
I Does not address the ability of powerful adversaries to solve

multiple puzzles.

I We might choose puzzle difficulty 220 operations, because we
want a puzzle that takes a couple of seconds to solve on a
modern CPU. There are definitely adversaries that have more
power than that, so the puzzle difficulty experiment says nothing
about them.

I Counterexample: Can construct examples based on signatures
using composite modulus. Puzzle solution is a signature forgery.

I Forging one signature can be easier than factoring the modulus
and so Bristol definition is satisfied.

I Forging 220 signatures may only take the effort of forging, say, 210

signatures by factoring the modulus and then using the trapdoor.

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 15 / 25

Computational models for puzzles » Strong puzzle difficulty

Strong puzzle difficulty
I We introduce new security experiments to address this weakness

(and provide additional functionality).

I Quantify the ability of an adversary to return multiple solutions,
not just one.

I The adversary can return solutions (str, puz, soln) where it
queried (str, puz) to the puzzle solving oracle, provided soln was
not the given solution

I Adversary has access to separate oracles for puzzle generation
and puzzle solving.

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 16 / 25

Computational models for puzzles » Strong puzzle difficulty

Interactive strong puzzle difficulty
Goal: output a list of n tuples (stri, puzi, solni) such that

1. VerSoln(s, stri, puzi, solni) is true,

2. (stri, puzi) was generated by the puzzle generation oracle, and

3. solni was not the response of any puzzle solution query for
(stri, puzi)

A client puzzle scheme is said to be ϵk,d,n()-interactive-strongly-
difficult if

Pr(A wins) ≤ ϵk,d,n(t)

for all probabilistic algorithms A running in time at most t, where

ϵk,d,n(t) ≤ ϵk,d,1(t/n)

for all t, n such that ϵk,d,n(t) ≤ 1.

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 17 / 25

Computational models for puzzles » Strong puzzle difficulty

Non-interactive strong puzzle difficulty
Goal: output a list of n tuples (stri, puzi, solni) such that

1. VerSoln(s, stri, puzi, solni) is true

2. solni was not the response of any puzzle solution query for
(stri, puzi)

Main difference: don’t require puzi to be generated by the puzzle
generation oracle. This accommodates client-generated puzzles
(useful in asynchronous settings or limited communication rounds).

Non-interactive puzzles are more general than interactive puzzles. But
we have two separate definitions because interactive puzzles can be
easier to work with in protocols. Interactive puzzles can also protect
against puzzle “herding” attacks by changing puzzle validity periods.

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 18 / 25

Computational models for puzzles » Strong puzzle difficulty

Examples
SPuz is a strongly-difficult interactive puzzle:

I Theorem. Let H be a random oracle. Let ϵk,d,n(q) =
(
q+n
n2d

)n
. Then

SPuz with H is an ϵk,d,n(q)-interactive-strongly-difficult client
puzzle, where q is the number of distinct queries to H.

Hashcash3 is a strongly-difficult non-interactive puzzle:
I Theorem. Let H be a random oracle. Let ϵk,d,n(q) =

q+n
n2d

. Then
Hashcash is an ϵk,d,n(q)-non-interactive-strongly-difficult client
puzzle, where q is the number of distinct queries to H.

Proofs are based on counting number of queries to H.

3
Back. Hashcash. Online, 1997, 2004. http://www.hashcash.org/

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 19 / 25

DoS-resistant protocols

Using puzzles with protocols

How should we use puzzles in protocols?
Goal: protect an existing protocol from denial of service attacks by
using client puzzles for gradual authentication.

Not linking DoS countermeasure (cookies or puzzles) can cause
authentication failure leading to DoS attacks (e.g., in IKEv24).

I Hashcash: primarily for email; use client-generated puzzles with
email address as part of puzzle.

I Bristol approach: authenticate generated puzzles; no link
between the client puzzle protocol and the subsequent protocol.

I Stebila and Ustaoglu5: only for key agreement; use session
identifier as part of puzzle.

Previous approaches also don’t address adversaries who can solve
more than 1 puzzle.

4
Mao and Paterson. On the plausible deniability feature of Internet protocols. Online, 2002.

5
Stebila and Ustaoglu. Towards denial-of-service-resilient key agreement protocols. ACISP 2010.

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 21 / 25

Using puzzles with protocols

Defining DoS-resistant protocols
I Adversary controls communication between all parties.

I Adversary can gain server secret information via Expose query.

I Adversary can get clients to solve puzzles.

I The probability that an efficient adversary can make the server
accept n puzzle instances should be bounded by a non-decreasing
function ϵk,n(t) where ϵk,n(t) ≤ ϵk,1(t/n).

I Server should not perform expensive operations in a protocol run
until puzzle is solved.

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 22 / 25

Using puzzles with protocols

Generic construction using client puzzles
I Easiest way to protect a cryptographic protocol using client

puzzles is to prepend the protocol run with a client puzzle run,
and only run the main protocol once the puzzle is accepted.

I Let P be a protocol, Puz be a puzzle, and let D(P, Puz) be the
protocol in which each run of P is prepended by a run of Puz,
protected by a MAC keyed by a server secret.

Theorem. If Puz is a strongly difficult puzzle, then D(P, Puz) is a
denial-of-service-resistant protocol.

If the first round of P involves expensive operations, then this adds an
extra round; otherwise, we may be able to combine message flows.

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 23 / 25

Using puzzles with protocols

Simple pre-session construction

Client Server (secret ρ)

Choose random NC
NC−−−−−−−−−→

Choose random x← {0, 1}k
x = x′︸︷︷︸

d

|| x′′︸︷︷︸
k−d

str = (C, S,NC,NS)
y = H(x, d, str)

σ = MACρ(str, x′′, y)
NS, x′′, y, σ
←−−−−−−−−−

Find z such that
H(z ∥ x′′, d, str) = y

str, x′′, y, z, σ
−−−−−−−−−→ Check for replay

Verify MAC σ

y
?
= H(z ∥ x′′, d, str)

,
Stebila, Kuppusamy, Rangasamy, Boyd, Gonzalez Nieto » Stronger Difficulty Notions for Client Puzzles 24 / 25

Stronger Difficulty Notions for Client Puzzles
and Denial-of-Service-Resistant Protocols

Douglas Stebila, Lakshmi Kuppusamy, Jothi Rangasamy, Colin Boyd, and Juan Gonzalez Nieto
Information Security Institute, Queensland University of Technology, Brisbane, Queensland, Australia

Email: stebila@qut.edu.au

I Provided new stronger definitions for puzzle difficulty, in
interactive and non-interactive settings.

I Showed existence of efficient puzzles satisfying the new
definitions.

I Showed how to apply puzzles in a generic way to achieve
DoS-resistant protocols.

Supported by the Australia-India Strategic Research Fund project TA02002.

	Background
	What is DoS?
	Defending against DoS

	Computational models for puzzles
	Bristol definition
	Strong puzzle difficulty

	Using puzzles with protocols

