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Australia-India Project
This work is part of the Australia-India Strategic Research Fund
(AISRF) project on Protecting Critical Infrastructure from Denial of
Service Attacks.

I Subproject 1: Advanced high-rate packet classifier

I Subproject 2: DoS defences for web services and service-oriented
architectures

I Subproject 3: DoS-resilient authentication protocols
I Subproject 4: DoS vulnerabilities in emerging technologies

I Subproject 5: Harmonisation of policy, legal and regulatory
environments
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Background » What is DoS?

Cyber attacks
I Estonia (April 2007): ping flooding, botnets; affected websites of

Estonian parliament, banks, ministries, newspapers.

I Georgia (August 2008): hacking/defacement, denial of service;
affected media sites.

I United States and South Korea (July 2009): DDoS using botnets
(est. 20,000-500,000 computers); affected websites of White
House, Pentagon, various South Korean government websites.
Allegedly launched by North Korean telecommunications
ministry.

I Google (June 2009): News searches sparked by Michael Jackson’s
death were initially mistook for an automated denial of service
attack.
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Background » What is DoS?

Types of denial of service attacks
I Brute force attacks: attacker generates sufficiently many

legitimate requests to overload a server’s resources. Does not
require special knowledge of protocol specification or
implementation.

I Distributed denial of service (DDoS) attacks
I Ping floods

I Semantic attacks: attacker tries to exploit vulnerabilities of
particular network protocols or applications. Requires special
knowledge of protocol specification and implementation.

I Buffer overflow attacks
I TCP SYN flooding / IP spoofing attacks
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Background » Defending against DoS

Prevention techniques
Try to identify malicious traffic:

I address filtering to block false addresses or addresses making too
many requests;

I bandwidth management by routers and switches;

I packet inspection: look for patterns of bad requests;

I intrusion-prevention systems: look for signatures of attacks.

Difficult to distinguish real users’ legitimate requests from attacker’s
legitimately-formed requests in brute force attacks.
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Background » Defending against DoS

Gradual authentication
I Principle for denial-of-service resistance proposed by Meadows.

I Idea is to use cheap and low-security authentication initially.

I Gradually put more effort into authentication if earlier stages
succeed.
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Background » Defending against DoS

Cookies, puzzles and cryptographic authentication
I Cookies provide proof of reachability.

I Puzzles provide proof of work.

I Signatures provide strong cryptographic authentication.
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Background » Defending against DoS

Puzzles
The server generates a challenge and the client is required to solve a
moderately hard puzzle based on this challenge.
Puzzles should be:

I easy to generate,

I not require stored state,

I provably hard to solve, and

I easy to verify.

Puzzles may be either computation-bound or memory-bound. We
only look at the former.
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Background » Defending against DoS

Puzzle security properties
I Difficulty: it should be moderately hard to solve a puzzle

(computation-bound or memory-bound).

I Unforgeability: it should not be possible to generate valid
puzzles.

I Non-parallelizability: it should not be possible to have multiple
computers solve a puzzle in less time than a single computer
could.

I Tuneable difficulty: can provide puzzles with different difficulty
levels.

I Useful puzzles: the work done in solving a puzzle can be used for
another purpose.
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Computational models for puzzles

Puzzle definition
Formally, a client puzzle is a tuple of algorithms:

I Setup(1k): Return public parameters and server secret s.

I GenPuz(s, d, str): Generate a puzzle of difficulty d for session
string str.

I FindSoln(str, puz): Find a solution for session string str and the
given puzzle puz.

I VerSoln(s, str, puz, soln) Check if soln is a valid solution for puzzle
puz and session string str.

GenPuz and VerSoln should be very inexpensive.
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Computational models for puzzles

SPuz: puzzle based on Juels–Brainard construction

Client Server
Req−−−−−−−→

Choose random x← {0, 1}k
x = x′︸︷︷︸

Q

∥ x′′︸︷︷︸
k−Q

y = H(x,Q, str)
x′′, y

←−−−−−−−
Find z such that
H(z ∥ x′′,Q, str) = y

str, x′′, y, z
−−−−−−−→

y
?
= H(z ∥ x′′,Q, str)
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Computational models for puzzles » Bristol definition

Puzzle difficulty: the Bristol definition
I Experiment parameters: puzzle difficulty d, security parameter k,

and puzzle scheme P.

I Adversary interacts with a challenger which runs Setup(1k) and
provides access to two oracles:

I CreatePuzSoln(str): Set puz ← GenPuz(s, d, str) and find a valid
solution soln for puz. Return (puz, soln).

I Test(str∗): Return puz∗ ← GenPuz(s, d, str∗). Only a single Test
query is allowed.

I Goal: output soln∗ such that VerSoln(puz∗, soln∗) is true.
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Computational models for puzzles » Bristol definition

Puzzle difficulty: the Bristol definition
A client puzzle scheme is said to be ϵk,d()-difficult if

Pr(A wins) ≤ ϵk,d(t)

for all probabilistic algorithms A running in time at most t, where
ϵk,d(t) is a family of functions monotonically increasing in t.

I Example: might have ϵk,d(t) = t/d+ negl(k).

I Why monotonically increasing? Should be impossible to solve a
puzzle more easily by taking less time.
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Computational models for puzzles » Bristol definition

Limitation in Bristol definition
I Does not address the ability of powerful adversaries to solve

multiple puzzles.

I We might choose puzzle difficulty 220 operations, because we
want a puzzle that takes a couple of seconds to solve on a
modern CPU. There are definitely adversaries that have more
power than that, so the puzzle difficulty experiment says nothing
about them.

I Can construct examples based on signatures using composite
modulus. Puzzle solution is a signature forgery.

I Forging one signature can be easier than factoring the modulus
and so Bristol definition is satisfied.

I Forging 220 signatures may only take the effort of forging, say, 210

signatures by factoring the modulus and then using the trapdoor.
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Computational models for puzzles » Strong unforgeability

Strong puzzle difficulty
I We introduce new security experiments to address this weakness

(and provide additional functionality).

I Quantify the ability of an adversary to return multiple solutions,
not just one.

I The adversary can return solutions (str, puz, soln) where it
queried (str, puz) to the puzzle solving oracle, provided soln was
not the given solution

I Adversary has access to separate oracles for puzzle generation
and puzzle solving.
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Computational models for puzzles » Strong unforgeability

Strong puzzle difficulty
Goal: output a list of n tuples (stri, puzi, solni) such that

1. VerSoln(s, stri, puzi, solni) is true,

2. (stri, puzi) was generated by the puzzle generation oracle, and

3. solni was not the response of any puzzle solution query for
(stri, puzi)

A client puzzle scheme is said to be ϵk,d,n()-strongly-difficult if
Pr(A wins) ≤ ϵk,d,n(t) for all probabilistic algorithms A running in time
at most t, where

ϵk,d,n(t) ≤ ϵk,d,1(t/n)

for all t, n such that ϵk,d,n(t) ≤ 1.
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Computational models for puzzles » Strong unforgeability

SPuz is strongly difficult

Theorem
Let H be a random oracle and let ϵk,Q,n(q) =

(
q+n
n2Q

)n
. Then SPuz is an

ϵk,Q,n(q) strongly difficult client puzzle, where q is the number of distinct
queries to H.

Proof is based on counting number of queries to H. Suppose that qi is
the number of queries used to attempt to solve puzzle i. Then
q = q1 + . . .+ qn and adversary’s success probability is bounded by

n∏
i=1

qi + 1

2Q
≤

(∑n
i=1(qi + 1)

n2Q

)n
=

(
q+ n
n2Q

)n
.
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Computational models for puzzles » Using puzzles with protocols

Defining DoS-resistant protocols
I Adversary controls communication between all parties.

I Adversary can gain server secret information via Expose query.

I Adversary can get clients to solve puzzles.

I The probability that an efficient adversary can make the server
accept n puzzle instances should be bounded by a non-decreasing
function ϵk,n(t) where ϵk,n(t) ≤ ϵk,1(t/n).

I Server should not perform expensive operations in a protocol run
until puzzle is solved.
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Computational models for puzzles » Using puzzles with protocols

Generic construction using client puzzles
I Easiest way to protect a cryptographic protocol using client

puzzles is to prepend the protocol run with a client puzzle run,
and only run the main protocol once the puzzle is accepted.

I Let P be a protocol, Puz be a puzzle, and let D(P, Puz) be the
protocol in which each run of P is prepended by a run of Puz,
protected by a MAC keyed by a server secret.

Theorem (Informal)
If Puz is a strongly difficult puzzle, then D(P, Puz) is a
denial-of-service-resistant protocol.

If the first round of P involves expensive operations, then this adds an
extra round; otherwise, we may be able to combine message flows.
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Computational models for puzzles » Using puzzles with protocols

Simple pre-session construction

Client Server (secret ρ)

Choose random NC
NC−−−−−−−−−→

Choose random x← {0, 1}k
x = x′︸︷︷︸

Q

|| x′′︸︷︷︸
k−Q

str = (C, S,NC,NS)
y = H(x,Q, str)

σ = MACρ(str, x′′, y)
NS, x′′, y, σ←−−−−−−−−−

Find z such that
H(z ∥ x′′,Q, str) = y

str, x′′, y, z, σ
−−−−−−−−−→ Check for replay

Verify MAC σ

y
?
= H(z ∥ x′′,Q, str)
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Computational models for puzzles » Using puzzles with protocols

Conclusion (models)
I Provided new stronger definition for puzzle difficulty.

I Showed existence of efficient puzzles satisfying the new
definition.

I Paper also includes definition for non-interactive puzzle
difficulty.

I Showed how to apply puzzles in a generic way to achieve
DoS-resistant protocols.
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An integrated mechanism » Extending Aura’s puzzle

Aura’s puzzle
I Aura, Nikander and Leiwo, 2000.

I Server chooses nonce NS and difficulty level Q. These are sent to
the client.

I Client C generates nonce NC. Needs to find X so that:

H(C,NS,NC, X) = 00 . . . 000︸ ︷︷ ︸
Q bits

Y

Client C returns X together with nonce NC.

I Puzzle verification uses only one hash call

I If H is a random function then client needs to make around 2Q

hash function calls before solving the puzzle
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An integrated mechanism » Extending Aura’s puzzle

Limitations of Aura’s puzzle
I No checking of client reachability: puzzle does not incorporate

cookie-like property based on client identity/address.

I No solution may exist: puzzle solution is not generated by server.

I Granularity is exponential: can only increase difficulty level by
doubling at each step.
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An integrated mechanism » Extending Aura’s puzzle

A generalised Aura puzzle
I We allow a solution to be value d with d < D for some maximum

value D.

I For each time period the server selects a secret K and generates a
nonce NS.

I Server also chooses the puzzle difficulty level Q and an Q-bit
integer D.
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An integrated mechanism » Extending Aura’s puzzle

A generalized Aura puzzle

Client Server
Req−−−−−−−−−→

Z = HK(NS,Q,D,C)

Generate NC
Z,NS,Q,D←−−−−−−−−−

M = Z||NS||NC||S||C
Find X such that
H(M, X) mod 2Q ≤ D

Z,NS,Q,D,NC, X−−−−−−−−−→ Check (NS,Q,D) recent and
NC not reused

Z
?
= HK(NS,Q,D,C)

M = Z||NS||NC||S||C
Check H(M, X) mod 2Q ≤ D

,
Boyd, Gonzalez, Kuppusamy, Rangasamy, Stebila » DoS-resistant key exchange 32 / 41



An integrated mechanism » Extending Aura’s puzzle

Properties of new puzzle
I Each puzzle issued is a function of the client identity. Therefore

proof of reachability is obtained.

I The puzzle can be proven to be strongly difficulty with

ϵk,Q,n(t) =

(
(D+ 1)(q+ 1)

n2Q

)n
where q is the number of calls to the random hash function.

I The granularity is linear in D.
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An integrated mechanism » Integrating new puzzle with Bernstein signatures

Bernstein’s signatures
I Initially proposed by Dan Bernstein in 2002.

I Based on earlier idea by Rabin and Williams.

I The signature of a message is a square root of the (randomised)
hash of the message.

I Verification is the fastest for any known signature: requires one
modular squaring and one modular multiplication, but can be
improved by reducing large values to smaller ones.

,
Boyd, Gonzalez, Kuppusamy, Rangasamy, Stebila » DoS-resistant key exchange 34 / 41



An integrated mechanism » Integrating new puzzle with Bernstein signatures

Bernstein’s signatures
Let H be a hash function. The signature schemes consists of the
following algorithms.

I KeyGen: Generate an RSA private key sk = (p, q) and
corresponding public key pk = n = pq.

I Sign(sk = (p, q),m): Compute a signature (r, h, f, t, s) such that
h = H(m, r) for a random r, f ∈ {−2,−1, 1, 2}, and s2 = f · h+ t · n.

I Verify(pk = n,m, (r, h, f, t, s)): Check if h = H(m, r) and

s2 ≡ f · h+ t · n mod u

where u is a ‘secret’ prime of around 115 bits.
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An integrated mechanism » Integrating new puzzle with Bernstein signatures

Integrating puzzle into Bernstein signatures
I The value H(M, X) in the puzzle becomes the hash value H(m, r)

used in the Bernstein signature.

I The client solves the puzzle and computes its signature using the
hash value H(M, X).

I The server checks the puzzle solution and, if correct, continues to
verify signature.

I The puzzle is checked ‘for free’ since the hash is computed
anyway to verify the signature.
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An integrated mechanism » Integrating new puzzle with Bernstein signatures

Comparing performance of RSA and Bernstein
signatures

verification operations per second
OpenSSL v1.0.0 64-bit x86 64 build

modulus RSA (e = 65537) FVDS (full verify)
(bits) with separate puzzle with built-in puzzle

1024 29630 180938
1536 14891 122558
2048 8710 103962
4096 2354 46532
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An integrated mechanism » Implementing combined puzzle/signature in SSL

DoS resistance for SSL
I One of the most widely deployed key exchange protocols.

I Inherently carries no resistance to denial-of-service.

I We implemented a new cipher suite incorporating the new
combined puzzle and signature.

I Server must first check puzzle, then verify signature, then
perform RSA decryption of pre-master secret.
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An integrated mechanism » Implementing combined puzzle/signature in SSL

Number of connections achieved

Configuration RSA-1024 FVDS-1024
no puzzle 1621 1732
diff= 212; legitimate solutions 1597 1719
diff= 212; garbage solutions 3734 4030
diff= 212; mix legitimate/garbage 100 legitimate 100 legitimate

2767 garbage 3022 garbage

FVDS shows better performance in all cases.
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An integrated mechanism » Implementing combined puzzle/signature in SSL

Conclusion (integrated mechanism)
I Designed improved client puzzle.

I Shown the theoretical and practical possibility of combining
puzzle and signatures.

I Demonstrated effectiveness of method in SSL.

I Could provide more dramatic improvement given more efficient
server-side key exchange.
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Further reading
I Chen, Morrissey, Smart, and Warinschi. Security Notions and

Generic Constructions for Client Puzzles. ASIACRYPT 2009.

I Stebila, Kuppusamy, Rangasamy, Boyd and Gonzalez-Nieto.
Stronger Difficulty Notions for Client Puzzles and
Denial-of-Service-Resistant Protocols. CT-RSA 2011.

I Rangasamy, Stebila, Boyd and Gonzalez-Nieto. An Integrated
Approach to Cryptographic Mitigation of Denial-of-Service
Attacks. ASIACCS 2011.
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