Predicate-Based Key Exchange

James Birkett Douglas Stebila

Information Security Institute Queensland University of Technology

15th Australasian Conference on Information Security and Privacy, 2010

Outline

- Cryptographic Primitives
- Key Exchange

2 Motivation

• A Hypothetical Example

Our Contribution

- Security Model
- Generic Construction

QUI

Background

Motivation Our Contribution Summary Cryptographic Primitives Key Exchange

Outline

- Cryptographic Primitives
- Key Exchange

2 Motivation

• A Hypothetical Example

3 Our Contribution

- Security Model
- Generic Construction

Cryptographic Primitives Key Exchange

Identity-based Cryptography

- Key generation centre (KGC) generates public parameters and master secret.
- KGC gives private keys to users based on their *identity*.
- Identities may be names, email addressess etc.
 E.g "bob@example.com", "James Birkett"
- Sender uses an identity to encrypt.

Cryptographic Primitives Key Exchange

Attribute-based Cryptography

- KGC gives private keys to users based on their attributes.
- Attributes are boolean values.
 E.g "CS_department=true", "Professor=true", "Student=false"
- The list of attributes is fixed at setup.
- Sender uses an access structure to encrypt.

Access structures limited to AND, OR and threshold operations.

Cryptographic Primitives Key Exchange

Predicate-based Cryptography

- Generalises attributes to credentials.
- Credentials are name-value pairs. E.g "Department=CS", "Department=Maths"
- The list of credentials need not be fixed at setup.
- More complex access structures available, e.g equality, subset or comparison operations as well as AND, OR and threshold.
- We call these access structures *predicates*, $\Phi(C)$.

Cryptographic Primitives Key Exchange

Relationship

- Attribute-based cryptography is a special case of Predicate-based cryptography.
- Our model and generic construction handles both.

Cryptographic Primitives Key Exchange

Outline

2 Motivation

• A Hypothetical Example

3 Our Contribution

- Security Model
- Generic Construction

Cryptographic Primitiv Key Exchange

Key-exchange

QUT

A Hypothetical Example

Outline

1 Background

- Cryptographic Primitives
- Key Exchange

2 Motivation

• A Hypothetical Example

3 Our Contribution

- Security Model
- Generic Construction

QUT

A Hypothetical Example

Therapy With the Society of Secretive Psychologists.

Alice Needs:

- A registered psychologist.
- A private channel.
- Anonymity.

Bob Needs:

- A private channel.
- Proof of insurance.

A Hypothetical Example

Therapy How Predicate-Based Key Exchange Could Help

A Hypothetical Example

Predicate-based Key Exchange

- If you do not need anonymity (credential-privacy) then you do not need predicate-based key exchange!
- Instead you may simply present a list of credentials signed by the trusted third party.

Security Model Generic Construction

Outline

1 Background

- Cryptographic Primitives
- Key Exchange

Motivation

- A Hypothetical Example
- Our ContributionSecurity Model
 - Generic Construction

Security Model Generic Construction

Identity-based Key-Exchange Security

- Challenger maintains a list of users ID_1, \ldots, ID_n .
- Each user has a secret key *sk*_{*ID*}.
- Each user U_{ID} maintains a list of sessions.
- Each session contains:
 - The ID of the peer ID'.
 - A list of messages exchanged, m_1, \ldots, m_r .
 - A state variable.
 - (Possibly) a key $k_{ID,\ell}$.

Security Model Generic Construction

Separating credentials from addresses

- Unique identities incompatible with credential-privacy.
- Cannot direct messages using credentials.
- Instead use user numbers independent from credentials for addressing.

Security Model Generic Construction

Addressing the Addressing Problem Attempt 1

QUT

Security Model Generic Construction

Addressing the Addressing Problem Attempt 1

- Anonymous proxy servers / routing services may hide initiator's address.
- Initiator still needs to direct messages to the recipient.

Security Model Generic Construction

Addressing the Addressing Problem Attempt 2

QUT

Security Model Generic Construction

Addressing the Addressing Problem Attempt 2

- Society of Secretive Psychologists operates their own trusted gateway.
- Gateway knows credentials of each psychologist.
- Gateway can choose psychologist satsifying a given predicate Φ_{\cdot}

Security Model Generic Construction

Session-Key Security

Security Model Generic Construction

Session-Key Security (cont)

- Adversary may not corrupt any user such that $\Phi(C) = 1$.
 - Forward Security: adversary may corrupt user after the Test query.
- Adversary may not SKReveal u^*, ℓ^* .
- Adversary may not SKReveal u, ℓ if $s_{u,\ell}$ is a peer of s_{u^*,ℓ^*} .

Security Model Generic Construction

Credential Privacy

Security Model Generic Construction

Credential Privacy (cont)

- Φ^* must satisfy $\Phi^*(C_{u_0}) = \Phi^*(C_{u_1})$
- Adversary may not Activate u^* .
- Adversary may not Corrupt U_{u_0} or U_{u_1} .
- Adversary may not SKReveal $u^*, 1$.
- Adversary may not SKReveal u, ℓ if $s_{u,\ell}$ is a peer of $s_{u^*,1}$.

Security Model Generic Construction

Credential Privacy and Unlinkability

Credential Privacy	Unlinkability
No user can determine anything	You cannot tell if two sessions are
about your credentials other than	with the same person or not.
$\Phi(C)$, i.e. whether you satisfy	
their predicate.	

• Credential privacy implies Unlinkability.

Security Model Generic Construction

Outline

1 Background

- Cryptographic Primitives
- Key Exchange

Motivation

• A Hypothetical Example

Our Contribution

- Security Model
- Generic Construction

Security Model Generic Construction

Protocol Flow

$\Pi_{\mathcal{S},\mathbb{G}}$ – Protocol flow		
Initiator		Responder
secret key <i>sk</i> _l		secret key <i>sk_R</i>
responder predicate Φ_I		initiator predicate Φ_R
$\begin{array}{c} x \stackrel{R}{\leftarrow} \mathbb{Z}_{q} \\ X \stackrel{C}{\leftarrow} \sigma^{X} \end{array}$		
	$\xrightarrow{X, \Phi_{I}}$	$\begin{array}{c} y \stackrel{R}{\leftarrow} \mathbb{Z}_{q} \\ Y \stackrel{C}{\leftarrow} \sigma^{y} \end{array}$
If \neg Verify((resp , X, Φ_I , Y, Φ_R), Φ_I , σ_R): <i>status</i> \leftarrow Failed Abort	$\overset{Y,\Phi_R,\sigma_R}{\leftarrow}$	$\sigma_R \leftarrow Sign(sk_R, (resp, X, \Phi_I, Y, \Phi_R), \Phi_I)$
$\sigma_{I} \leftarrow \operatorname{Sign}(sk_{I}, (\operatorname{init}, X, \Phi_{I}, Y, \Phi_{R}, \sigma_{R}), \Phi_{R})$ $Z \leftarrow Y^{X}$ $k \leftarrow H(X, \Phi_{I}, Y, \Phi_{R}, Z)$ status \leftarrow Established		
	$\xrightarrow{\sigma_{I}}$	If \neg Verify((init, $X, \Phi_I, Y, \Phi_R,), \Phi_R, \sigma_I$): status \leftarrow Failed Abort $Z \leftarrow X^y$
		$k \leftarrow H(X, \Phi_I, Y, \Phi_R, Z)$ status \leftarrow Established

QUT

Summary

- Existing key-exchange models identify credentials with addresses.
- Predicate-based models must find an alternative to this.
- Predicate-based key exchange is only useful if you require credential-privacy.
- Future work
 - Adapt the model to include state-reveal or ephemeral-key-reveal queries.
 - Develop constructions which are secure against these queries.