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Abstract

While the difficulty of solving certain graph theoretical problems has been at the

heart of important questions in complexity theory, the hard problems used for cryp-

tographic purposes are usually number theoretic in nature. We explore the use of

graph structures for cryptographic purposes.

Finding a hidden clique in an otherwise random graph has potential as a hard problem.

We extend a previous result of Juels and Peinado (A. Juels and M. Peinado. Hiding

cliques for cryptographic security. In Proc. 9th Ann. ACM-SIAM Symp. on Discrete

Algorithms, pages 678–684, 1998.) to demonstrate that, assuming it is hard to find

a clique of size (1 + ε) log1/p(n) in a random graph from Gn,p, it is also hard to find

a hidden clique of the same size embedded in a graph from Gn,p; this assumption

has been an open problem for 30 years. Although our result holds asymptotically,

the problem can be solved with non-trivial probability for graphs with, say, 1000

vertices. Hidden cliques can be used in a zero-knowledge protocol for authentication

or in a generalized encryption scheme. We discuss the practicality of graph-based

cryptographic systems and conclude that protocols based on hidden cliques exchange

data structures of too large a size to be feasible.

We also report on the infeasibility of using knowledge of hidden Hamiltonian cycles

or knowledge of graph colourings as the basis of a cryptosystem.
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Chapter 1

Introduction

Cryptography is one of the oldest applied uses of mathematics, and is today an ex-

citing confluence of mathematics, computer science, and even quantum computing.

With the safety of military communications and financial transactions depending on

the security of cryptosystems, it is important that the problems used be computa-

tionally intractable.

The goal of twentieth century cryptographers has been to mathematically character-

ize the difficulty of problems used for cryptographic purposes using the language of

computational complexity from theoretical computer science [12]. Ironically, though

cryptography has seen great commercial success and can now be found in devices of

all sizes - from desktop computers to mobile phones to miniscule sensors - cryptogra-

phers have almost universally failed in the goal in characterizing the difficulty of the

problems in question. The problem of factoring large numbers, for example, which is

at the heart of the RSA [42] and Diffie-Hellman [13] asymmetric cryptosystems, has

had its complexity class delineated, but the feasibility of problems in this complexity

class has not been determined. The schemes used for symmetric cryptosystems, such

as DES [39] and AES [40], are not even mathematically characterized.
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While modern day cryptography has focused on number theoretic problems, com-

putational complexity has often employed graph theoretic problems to characterize

complexity classes. A natural question, then, is whether difficult graph theoretic

problems can be used as the basis for cryptosystems. Surprisingly, this question has

been addressed only sporadically and only recently. In this dissertation we collect to-

gether and extend existing discussions on the tractability of graph theoretic problems

for cryptographic purposes and the practicality thereof.

Chapter 2 provides the necessary background in graph theory, complexity, and proba-

bility theory for the later discussions on hard problems and random graphs. Chapter 3

addresses the difficulty of problems involving cliques in graphs; the chapter includes

the main theoretical result of this dissertation, an extension of a theorem of Juels and

Peinado [26]. In Chapter 4, we discuss the use of other graph theoretic structures,

such as Hamiltonian cycles and k-colourings, for hard problems. Chapter 5 describes

two cryptographic schemes based on hidden cliques, and includes an original discus-

sion on the practicality of graph-based security protocols. We conclude in Chapter 6

with some open questions related to hard graph theoretic problems for cryptography.
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Chapter 2

Background

2.1 Graph theory

A graph G = (V, E) is an ordered pair of sets, consisting of a set V of vertices and a

set E ⊆ V × V of edges . For simplicity, we assume V ∩ E = ∅. We often abbreviate

an edge (u, v) as uv. If E is a multiset, then G is said to be a multigraph. If v is a

vertex in G, the edge vv is called a loop. If the edge set of G contains no loops and

is not a multiset (that is, the graph has no parallel edges), then G is a simple graph.

In the remainder of this paper, we use the term “graph” to denote a simple graph.

Graphs are often depicted with dots representing a vertex and lines between the dots

representing edges. The manner in which the dots and lines are drawn is not material

and does not convey any additional information.

The vertex set of a graph G is denoted V (G) and the corresponding edge set is E(G).

We often write v ∈ G as a shorthand for v ∈ V (G) and e ∈ G as a shorthand for

e ∈ E(G) for vertices and edges respectively. Two vertices u and v in G are adjacent

(or are neighbours) if uv ∈ E(G), and this is denoted u ∼ v; two vertices which are

not adjacent are said to be independent .

A graph H = (W, F ) is a subgraph of a graph G = (V, E), denoted H ≤ G, if W ⊆ V ,
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F ⊆ E, and F only contains edges between vertices in W . The subgraph induced by

a vertex set X ⊆ V (G) in a graph G is G[X] = (X, E ′), where E ′ = {uv ∈ E(G) :

u, v ∈ X}. A spanning subgraph G′ of a graph G is one in which V (G′) = V (G).

A complete graph Kn on n vertices is a graph in which every pair of vertices is

adjacent. A clique K in a graph G is a subset of vertices for which the induced

subgraph G[K] is complete. A maximal clique is a clique for which there is no vertex

v ∈ V (G) \K such that K ∪{v} is still a clique of G. The clique number cl(G) is the

maximum size of a clique in G. Let Ck(G) denote the number of cliques of size k in

G. Figure 2.1 shows a graph on 7 vertices for which the vertices {1, 2, 5, 6, 7} form a

clique of size 5.
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Figure 2.1: A graph on 7 vertices containing a 5-clique.

The complement of a graph G = (V, E) is the graph G = (V, E), where E = {uv :

u, v ∈ V, uv 6∈ E, u 6= v}. An independent set is a set of vertices all of which

are pairwise independent; that is, an independent set in a graph is a clique in the

complement of that graph.

The degree of a vertex v ∈ G, denoted degG(v), or deg(v) where there is no chance

of ambiguity, is the number of neighbours of v in G. The minimum degree of a graph

G is δ(G) = min{degG(v) : v ∈ V (G)} and the maximum degree of a graph G is

∆(G) = max{degG(v) : v ∈ V (G)}. A graph is k-regular if every vertex has degree

k.
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2.2 Random graphs

The theory of random graphs was first developed by Erdős and Rényi [15, 16, 17, 18]

as a tool to study extremal problems in graph theory. In most models of random

graphs, we define a vertex set V = {1, . . . , n}, and construct an edge set in which

each edge is present with some probability. The two most frequently occurring models

of random graphs are Gn,M and Gn,p.

Gn,M is the probability distriubtion of all graphs with n vertices and M edges; each

such graph occurs with equal probability, namely
(

n
M

)−1
.

Gn,p is the probability distribution of graphs with n vertices in which each edge occurs

independently with probability p, 0 < p < 1. Let G be the random variable for a

graph drawn from Gn,p. If |E(G)| = m, then

P(G) = pm(1− p)(
n
2)−m.

The expected size of the edge set of a graph G chosen from Gn,p is

E(|E(G)|) =
(n− 1)np

2
.

For a graph G, we use the notation PGn,p(G) and PGn,p〈k〉(G) to denote the proba-

bility of the graph G be chosen from the probability distributions Gn,p and Gn,p〈k〉

respectively.

2.2.1 Cliques in random graphs

We now turn to the study of cliques in random graphs from the Gn,p model. Let

Kr(G) be a random variable on Gn,p counting the number of r-cliques in a graph G.
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Then

E(Kr(G)) =

(
n

r

)
p(r

2).

In most random graphs, the sizes of the cliques are distributed in a small range, as

demonstrated by the following theorem [4, XI.1.4]:

Theorem 1. Let 0 < p < 1, 0 < ε < 1
2
. Almost every random graph in Gn,p has a

clique of size r for

(1 + ε) log1/p n < r < (2− ε) log1/p n

and no clique of size r for

r < (1− ε) log1/p n or r > (2 + ε) log1/p n.

2.3 Complexity

We use the standard terminology from computational complexity theory. An algo-

rithm runs in polynomial time if it halts within nO(1) steps on any input of size n,

where f(n) ∈ O(g(n)) means that there exist constants c, n0 such that, for all n > n0,

cf(n) < g(n). If f(n) ∈ O(g(n)), then g(n) ∈ Ω(f(n)). If f(n) ∈ O(g(n)) and f(n) ∈

Ω(g(n)), then f(n) ∈ Θ(g(n)). Finally, f(n) ∈ o(g(n)) if limn→∞ f(n)/g(n) = 0.

The class P consists of all languages L that have a polynomial time algorithm A

accepting the language: for any input x, x ∈ L if and only if A(x) accepts.

NP consists of all languages L that have a polynomial time algorithm A such that for

all x ∈ L, there exists a string y bounded in length by a polynomial in |x| such that

A(x, y) accepts, and for all x 6∈ L, A(x, y) rejects for all strings y. A language L is

NP-hard if, for all languages L′ ∈ NP, there exists a Turing reduction from L′ to L,
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that is, if there exists a Turing-computable function f such that x ∈ L′ if and only

if f(x) ∈ L. A language that is both NP-hard and is a member of NP is said to be

NP-complete.

RP is the class of all languages L for which there is a randomized algorithm A running

in worst-case polynomial time such that, for any input x,

x ∈ L =⇒ P(A(x) accepts) ≥ 1

2
,

x 6∈ L =⇒ P(A(x) accepts) = 0.

A randomized algorithm that solves an RP problem is said to have one-sided error .

A language belongs to the complementary class coRP if Σ∗ \L ∈ RP. Such a language

also has one-sided error, having non-zero probability of accepting a string not in the

language.

A randomized algorithm A with zero-sided error for a language L is one such that,

for any string x,

x ∈ L =⇒ P(A(x) accepts) = 1,

x 6∈ L =⇒ P(A(x) accepts) = 0.

The class of languages accepted by a randomized algorithm with zero-sided error

running in expected polynomial time is called ZPP.

The potential use of NP-complete problems as trapdoor one-way functions in the

construction of public-key cryptosystems was mentioned in the earliest papers on

public-key cryptography [13]. Although NP-complete problems do not have polyno-

mial time solutions assuming P 6= NP, this is only true in the worst-case. There are

many NP-complete problems for which there exist polynomial time algorithms that

recognize “most” strings in the language, and thus these problems are generally un-

suitable for cryptographic purposes. Levin [33] introduced the notion of average case
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NP-complete problems, problems for which the uniform distribution of instances has

no on average polynomial time algorithm unless every NP problem with every simple

probability distribution also has an on average polynomial time algorithm. Levin pro-

vides one example of an average case complete problem, namely tiling, but there are

no others known. Furthermore, there are no examples of using the difficulty of solving

random instances of average case complete problems for cryptographic purposes.

For many NP-complete problems, it is often possible to give a good approximate

solution. The performance ratio of an approximation algorithm A for a maximization

problem π is the ratio opt(π)
A(π)

, where opt(π) is the optimal solution of π, and A(π) is the

solution found by A, computed over all possible inputs; for a minimization problem

the performance ratio is A(π)
opt(π)

. The best possible approximation algorithm is a fully

polynomial-time approximation scheme (FPAS) which, for any ε > 0, produces a

performance ratio of 1 + ε in time bounded by a polynomial in n and ε−1, where n is

the size of the input.

There is a rich history and literature covering complexity theory. A thorough treat-

ment of randomized algorithms is given by Motwani and Raghavan [37]. Hemaspaan-

dra and Ogihara [24] provide a comprehensive and up-to-date collection of results

concerning complexity classes.

2.4 Probability theory

The analysis of randomized algorithms and random graphs often uses the language of

probability theory. Some standard results that are especially useful in this analysis

are listed below, but first we provide our notation. The probability of an event A is

denoted P(A), and the expectation of the event is E(A). If P is a probability distribu-

tion, then A ∈R P denotes A being chosen according to the probability distribution
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P . If S is a set, then A ∈R S denotes A being chosen from S according to the uniform

distribution, and A ⊆R S denotes A being chosen uniformly at random as a subset

of S for a given size of A.

Theorem 2 (Chebyshev’s Inequality). Let X be a random variable. Then for

a > 0,

P(|X| ≥ a) ≤ E(X2)

a2
.

Theorem 3 (The Chernoff Bound). Let X1, . . . , Xn be independent random vari-

ables taking the values 0 and 1 with probabilities 1 − p and p, respectively. Let

X =
∑n

i=1 Xi. For all θ such that 0 ≤ θ ≤ 1,

P(X ≥ (1 + θ)pn) ≤ e−θ2pn/3.

We say that an event A occurs with high probability if P(A) = 1 − o(1). If P is a

property and S is a set, we say that almost every element of S has property P if the

proportion of elements of S having property P is 1− o(1).

A random variable X has a binomial distribution with parameters n and p if its

probability mass function satisfies

f(k) = P(X = k) =

{(
n
k

)
pk(1− p)n−k, k = 0, 1, . . . , n,

0, otherwise.

The expected value of X is E(X) = np and the variance is Var(X) = np(1− p).

2.5 Cryptography

A zero-knowledge proof “is a proof that yields nothing but its validity” [21]. It can

be defined formally as follows.
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Introduced by Goldwasser et al. [22], an interactive proof system for a property P (x) of

an input x is a two-party protocol between a prover P and a probabilistic polynomial-

time verifier V such that the following holds: for every constant c > 0 and all suffi-

ciently long x,

P (x) = true =⇒ P(V accepts when interacting with P) ≥ 1− |x|−c

and for every possible prover P∗,

P (x) = false =⇒ P(V accepts when interacting with P∗) ≤ |x|−c

where the probabilities are taken only over V ’s coin tosses.

A zero-knowledge proof system for a property P (x) of an input x is an interactive

proof between P and V such that, for every possible probability polynomial-time

verifier V∗, the set of transcripts of the interaction of P and V∗ are indistinguishable

in polynomial time from any set of “forged” transcripts from a probabilistic expected

polynomial-time Turing machine MV∗ . A transcript of an interaction consists of all

information transmitted during the interaction plus the results of all of the V ’s random

coin tosses.

A common tool in zero-knowledge proofs is bit commitment. In a bit commitment

scheme, A commits to a value x using a related evidence value y that she gives to

B; B cannot learn anything about x from y, but A can later prove to B that she

originally committed to x. Formally, a commitment scheme is binding if A cannot

convince B that she committed to any value other than x given evidence y, and it

is concealing if B can learn nothing about x only given y. A commitment scheme is

secure if it is both binding and concealing.

There are a number of ways to implement commitment schemes. Naor [38] demon-

strates a bit commitment scheme using pseudorandomness, while Crépeau [11] gives

10



a protocol for bit commitment using a noisy binary symmetric channel; there are

many other schemes for bit commitment.1 Brassard et al. [7] provide a protocol

for bit commitment in the setting of quantum cryptography, although this protocol

was later proved not to be unconditionally secure by Mayers [35]. In fact, Brassard

et al. [8] demonstrate that, in the face of a quantum computer, any classical (i.e.,

non-quantum) bit commitment scheme cannot be unconditionally secure.

We often describe cryptographic protocols occurring between multiple parties. The

characters participating in the protocol are often Alice, denoted by A, Bob, denoted

by B, and Eve, who is often an adversary, denoted by E .

1For a comprehensive list of papers related to bit commitment schemes, see Lipmaa [34].
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Chapter 3

Cliques

In this chapter we explore the difficulty of problems related to finding cliques in graphs

and suitability of such problems for a cryptographic system.

3.1 The MAXCLIQUE problem

The problem of finding the size of the maximum clique in a graph is NP-hard, and

is one of Karp’s original NP-hard problems [27]. This problem is often called the

MAXCLIQUE problem.

The problem of approximating the size of the maximum clique in a graph was first

considered by Karp [28] in 1976. The best known polynomial-time approximation al-

gorithm for finding the size of the maximum clique is that of Boppana and Halldórsson

[6], which provides a performance ratio of O(n/ log2 n), using an algorithm belonging

to a class known as subgraph-excluding algorithms. The strongest current negative

results on approximating clique are due to H̊astad [23], who shows that unless P = NP,

MAXCLIQUE cannot be approximated in polynomial time within a performance ratio

of n1/3−δ, δ > 0, and furthermore that unless NP = coRP, MAXCLIQUE cannot be

approximated in polynomial time within a performance ratio of n1/2−δ, δ > 0.
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Karp [28] posited that there is no polynomial time algorithm capable of finding with

significant probability a clique of size (1 + ε) log2 n in a random graph from Gn, 1
2
, for

any ε > 0. This open problem was further extended by the conjecture of Jerrum

[25] that there is no randomized polynomial time algorithm that finds a clique of size

1.01 log2 n in a random graph chosen from Gn, 1
2

that is known to contain a clique of

size n0.49. Jerrum showed that in certain cases the Metropolis algorithm, a common

tool in combinatorial search problems, cannot find a clique of size (1+ε) log2 n for any

constant ε > 0 in polynomial time, even if a clique of size n1/2−δ, δ > 0, is randomly

hidden in the graph.

When the graph is known to contain a large clique of size greater than n/k + m, k a

fixed integer and m > 0, then a clique of size Ω(m3/(k+1)/ logc n) times a polynomial

in log n, for a constant c, can be found in polynomial time [1].

3.2 Clique hiding models

If, as in conjectured in the previous section, finding a reasonably small clique in a

random graph from Gn,p is hard, then a party who wishes to use knowledge of a

hidden clique in a cryptographic protocol has no better chance of finding a clique to

use than an adversary who wishes to attack the protocol. That is, we need a method

in which a graph can be constructed which contains a clique of which one party has

knowledge but that other parties cannot easily discover. In this section, we discuss

various techniques for randomly constructing graphs that contain cliques of a required

size.
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3.2.1 Näıve clique creation

The simplest method of hiding a clique in a random graph is to choose the clique

vertices and then build a random graph around them, a technique we will call näıve

clique creation.1 A clique of size k is hidden inside a random graph as follows. Let

V = {1, . . . , n}. Let K ⊆R V be a randomly chosen subset of k vertices. Construct

the (loopless) edge set E such that

P (uv ∈ E) =

{
1, if u, v ∈ K,

p, otherwise.

Let Gn,p〈k〉 denote the probability distribution of graphs formed in this manner.

Let G ∈R Gn,p〈k〉 and let K be a hidden clique of size k. The expected value of the

degree of a vertex is

E(deg(v)) =

{
(n− k)p + k − 1, v ∈ K,

(n− 1)p, v ∈ V \K.
(3.1)

The variance of the degree of a non-clique vertex v is

Var(deg(v)) = np(1− p). (3.2)

3.2.2 Split näıve clique creation

As seen in equation 3.1, the expected degree of vertices in the hidden clique is different

from the expected degree of vertices outside the hidden clique. The difference in

expected degree can sometimes be used as a heuristic to detect the vertices of the

hidden clique, as shown in section 3.3.2.

We now introduce another clique hiding technique called split näıve clique creation.

A clique of size k is hidden in a random graph as follows. Let V = {1, . . . , n}. Let

1This name is based on the terminology used in Brockington and Culberson [9].
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K ⊆R V be of size k. Construct the edge set E such that

P (uv ∈ E) =


1, if u, v ∈ K,

r, if u ∈ K, v 6∈ K,

p, if u, v 6∈ K.

Let Gn,(p,r)〈k〉 denote the probability distribution of graphs formed in this manner.

Let G ∈R Gn,(p,r)〈k〉 and let K be a hidden clique of size k. The expected value of the

degree of a vertex is

E(deg(v)) =

{
(n− k)r + k − 1, v ∈ K,

(n− k − 1)p + kr, v 6∈ K.
(3.3)

Ideally, we would like to construct random graphs with hidden cliques such that the

probability distribution of the degree of a vertex is independent of whether the vertex

is in the hidden clique or not. Using equation 3.3 above, we can easily construct

random graphs where the expected degree of a vertex is independent of whether

the vertex is in a hidden clique or not: this is just a special case of split näıve clique

creation. Given a value of r, an appropriate value for p can be determined by equating

the two cases of equation 3.3 and solving for p to get

p =
(n− 2k)r + k − 1

n− k − 1
. (3.4)

Example. Let n = 100, k = b3/2 log2 nc = 9, r = 1/2. Then for the vertices of a

graph from Gn,(p,r)〈k〉 to have uniform expected degree, choose

p =
(100− 18)1

2
+ 8

90
=

49

90
.

We can make an alternate formulation of split näıve clique creation to give a simpler

expression for p and to provide a more intuitive construction process. In our original

formulation of split näıve clique creation, the graph was constructed by selecting the

clique vertices, inserting all clique edges, then inserting edges incident with one clique
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vertex with probability r and inserting edges incident with no clique vertices with

another probability p. We could instead view the construction process as selecting a

graph from Gn,r〈k〉 and then inserting absent edges that are incident with no clique

vertices with additional probability p.

In this alternative formulation, the edge set is constructed such that

P (uv ∈ E) =


1, if u, v ∈ K,

r, if u ∈ K, v 6∈ K,

r + (1− r)p, if u, v 6∈ K.

Let Gn,(p,r)〈k〉′ denote the probability distribution of graphs formed in this manner.

The expected value of the degree of a vertex is

E(deg(v)) =

{
(n− k)r + k − 1, v ∈ K,

(n− k − 1)(r + p(1− r)) + kr, v 6∈ K.
(3.5)

To achieve uniform expected vertex degree for graphs from Gn,(p,r)〈k〉′, we need

p =
k − 1

n− k − 1
. (3.6)

We note that, for a fixed value of r and p chosen appropriately for each model,

Gn,(p,r)〈k〉 and Gn,(p,r)〈k〉′ yield the same probability distribution.

We use the term quasi-random graph to refer to a graph formed in a manner such as

näıve clique creation or split näıve clique creation. That is, a quasi-random graph is

one that is formed by a random process, but not necessarily the process corresponding

to graphs in Gn,p.

3.3 Finding hidden cliques

Many techniques for finding hidden cliques in a quasi-random graph rely on the

expected value and variance of the degrees of the vertices of the graph, as we computed

in the previous section.
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3.3.1 The näıve method

The näıve method for searching for a clique of size k in a graph from Gn,p〈k〉 would

be to consider every subset of vertices of size k and check if it is a clique. In fact,

we only need to consider vertices that have degree at least k. The degrees of the

non-hidden clique vertices are distributed according to a binomial distribution with

mean (n− 1)p and variance np(1− p), and vertices of the hidden clique have higher

expected degree, so, by Chebyshev’s inequality, the number of vertices with degree at

least k = (1 + ε) logp n is O(n). Hence, the number of subsets to try is

O

((
n

(1 + ε) log1/p n

))
.

Section 5.3 contains numerical information concerning the parameter size needed to

ensure security against clique finding using the näıve method.

3.3.2 Asymptotic results

There are various results concerning the ability to find large hidden cliques in random

graphs.

A consideration of the expected values and variance of the degrees of vertices in a

graph from Gn,p〈k〉 shows that if k ≥ c
√

n log n, for a sufficiently large constant c > 0,

then, for every graph G chosen from Gn,p〈k〉, with high probability any vertex of the

hidden clique K has larger degree than a vertex in V \K. Kučera [31] explores this

analysis further.

Alon et al. [2] give a polynomial time algorithm that with high probability finds for

all k > c
√

n, c > 0 a constant, the unique largest clique of size k in a random graph

from Gn, 1
2
〈k〉. Their result can be extended to Gn,p〈k〉.
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Feige and Krauthgamer [19] also give a polynomial time algorithm that with high

probability finds a hidden clique of size k = Ω(
√

n) in Gn,p〈k〉. Whereas the proof of

Alon et al. used spectral analysis, Feige and Krauthgamer give a different algorithm

based on the so-called Lovász theta function. Their algorithm additionally certifies

the optimality of the found hidden clique. Furthermore, their technique applies to

semirandom graphs. A semirandom graph G∗ is constructed as follows:

1. Choose a random graph G from Gn,p〈k〉.

2. Choose Q ⊆R V (G), |Q| = k. Let Gmin = (V, E(Q)) be the graph with just the

n vertices V (G) and the edges of the clique Q. Let Gmax = G〈Q〉 be the graph

formed by embedding the clique Q in the graph G.

3. Choose G∗ “sandwiched” between Gmin and Gmax; that is, choose G∗ with vertex

set V (G) and edge set such that E(Gmin) ⊆ E(G∗) ⊆ E(Gmax). The edge set

of G∗ may be chosen uniformly at random or by some other process to model

various adversary to attack methods.

Intuitively, a semirandom graph is a graph from which an adversary has been able to

remove some edges.

There are currently no results characterising the difficulty of finding hidden cliques

of size k = o(
√

n) in random graphs from Gn,p〈k〉. Jerrum [25] showed that the

Metropolis algorithm, one tool for combinatorial search problems, cannot find a clique

of size k = o(
√

n) in graphs from Gn,p〈k〉.

In a paper concerning his graph generalized encryption scheme, Kučera [30] proves

that certain common heuristic algorithms will, asymptotically, fail with high proba-

bility to find a clique of size k = o(
√

n), in a graph from Gn,p〈k〉 (although Kučera’s

work is phrased in terms of independent sets instead of cliques).
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3.4 A Theorem of Juels and Peinado

Although the results of the previous section demonstrate that large hidden cliques in

Gn,p〈k〉 can often be found, there are no results about the difficulty of finding smaller

hidden cliques, say cliques with sizes in the range [(1 + ε) logb n, (2− ε) logb n], ε > 0.

As reported in section 3.1, there is a long standing conjecture by Karp [28] about the

hardness of finding a clique with size in the aforementioned range in a graph from

Gn,p, but not in a graph from Gn,p〈k〉.

In this section we prove a result relating the difficulty of finding a clique of the

aforementioned size in a graph from Gn,p〈k〉 to that of finding a clique of the same

size in a graph from Gn,p. In particular, we provide an extension of a result of Juels and

Peinado [26]. Informally, this result demonstrates that a polynomial-time algorithm

that finds a clique of the aforementioned size with probability inversely proportional

to a polynomial in n in a graph from Gn,p〈k〉 will also find a clique of the same size

with probability inversely proportional to a (possibly different) polynomial in n in a

graph from Gn,p. More concisely, it is no easier to find a clique in a graph from Gn,p〈k〉

than it is to find a clique in a graph from Gn,p. Thus, Karp’s original conjecture can

be extended to include the problem of finding cliques in graphs from Gn,p〈k〉.

The original proof of Juels and Peinado [26] demonstrates the result for the case

p = 1/2. We provide an extension of the original proof for the case where p is an

arbitrary constant.

3.4.1 Sketch of proof

We begin by showing that when the number of cliques in G is close to the expected

number of cliques in the random graph G′, the probability of choosing G from Gn,p〈k〉
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is close to the probability of choosing G from Gn,p. We also show that the variance of

the number of cliques in a graph from Gn,p〈k〉 is small. Combining these two results,

we show that most graphs in Gn,p〈k〉 are “good” in the sense that the number of

cliques is close to the expected number of cliques. We can then reduce the proportion

of “bad” graphs to an arbitrarily small amount, and so any algorithm that finds a

good graph will do so with non-negligible probability.

3.4.2 Proof of main theorem

Lemma 1. Let G be chosen uniformly at random from Gn,p〈k〉. Then

PGn,p〈k〉(G) = PGn,p(G)
Ck(G)

E(Ck(Gn,p))
.

Proof. The process of selecting a graph G from Gn,p〈k〉 can be viewed as the process

of selecting a graph G′ from Gn,p, selecting a random set K of size k of vertices on

which to plant a clique, and then embedding the clique. We must determine the

probability that the graph constructed in this manner from Gn,p corresponds exactly

to the graph G.

The probability that the clique K embedded into G′ corresponds to a clique in G is

Ck(G)/
(

n
k

)
.

The edges of G′ not in K must also correspond exactly to the edges in G not in K.

That is, for each pair of distinct vertices u, v, both not in K, uv ∈ E(G) if and only

if uv ∈ E(G′). Let |E(G)| = m =
(

k
2

)
+ `; that is, there are

(
k
2

)
clique edges and `

non-clique edges. The probability that the edges not in K match exactly is

p`(1− p)(
n
2)−(k

2)−`.

Hence,

PGn,p〈k〉(G) =
Ck(G)(

n
k

) p`(1− p)(
n
2)−(k

2)−`.
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By Bollobás [4, XI.I.(1)], E(Ck(Gn,p)) =
(

n
k

)
p(k

2). Additionally, PGn,p(G) = pm(1 −

p)(
n
2)−m. Thus,

PGn,p〈k〉(G) = PGn,p(G)
Ck(G)

E(Ck(Gn,p))
.

�

Lemma 2. Let G ∈ Gn,p. Then

Var(Ck(G)) = O(n4 log n)E(Ck(G))2.

Proof. Consider pairs of cliques with ` vertices in common, as in Bollobás [4, XI.I.2].

The probability that G contains a given pair of k-cliques having ` vertices in common

is p2(k
2)−(`

2). Then

E(Ck(G)2) =
k∑

`=0

(
n

k

)(
k

l

)(
n− k

k − l

)
p2(k

2)−(`
2).

Consider the quotient

E(Ck(G)2)

E(Ck(G))2
=

k∑
`=0

(
k
`

)(
n−k
k−`

)(
n
k

)
p(`

2)
.

Let the `th term of the sum be denoted by s`. Now, s0 =
(

n−k
k

)
/
(

n
k

)
< 1. Recalling

the basic identity that (a

b

)b

≤
(

a

b

)
≤
(ae

b

)b

we find that, for ` = 1, . . . , k,

s` ≤
(

ke

`

)`(
(n− k)e

k − l

)k−`(
k

n

)k

p−(`
2)

=

(
k2

`

)`(
(n− k)k

k − `

)k−` ( e

n

)k

p−(`
2)

=

(
k

k − `

)k−`

ekp−(`
2)
(

k2

n

)`(
n− k

n

)k−`
1

``

<

(
k

k − `

)k−`

ekp−(`
2)
(

k2

n

)`

.

Now, (
k

k − `

)k−`

=

(
1 +

`

k − `

)k−`

≤ e` < ek < e(2−δ) log1/p n ∈ o(n2).
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Similarly, ek ∈ o(n2), and

log1/p

(
p−(`

2)
(

k2

n

)`
)

= −
(

`

2

)
log1/p p + 2` log1/p k − ` log1/p n

=

(
`

2

)
+ 2` log1/p k − ` log1/p n.

But ` < k < 2 log1/p n and
(

`
2

)
< `2

2
< ` log1/p n, so

log1/p

(
p−(`

2)
(

k2

n

)`
)

< 0.

Thus,

p−(`
2)
(

k2

n

)`

< 1.

Hence, s` ∈ O(n4) for 1 ≤ ` ≤ k. Finally,

Var(Ck(G)) = E(Ck(G)2)− E(Ck(G))2

=
k∑

`=0

(
k
`

)(
n−k
k−`

)(
n
k

)
p(`

2)
E(Ck(G))2 − E(Ck(G))2

∈ O(n4 logb n− 1)E(Ck(G))2,

which yields the desired result. �

Lemma 3 demonstrates that the set of so-called “bad” graphs, for which the number

of cliques is much larger than the expected number of cliques, is a small fraction of

Gn,p. The next lemma demonstrates that the bad graphs also constitute just a small

fraction of Gn,p〈k〉.

Lemma 3. Let G ∈ Gn,p. Let Z = {G′ : Ck(G
′) > n2hE(Ck(G))}, for some constant

h > 0. Then, for any constant ε > 0, PGn,p〈k〉(Z) ∈ O(n−h+4+ε).

Proof. Let Ek = E(Ck(G)). Partition Z into sets Zj = {G′ : njhEk < Ck(G
′) ≤

n(j+1)hEk}. Then Z = ∪∞j=2Zj. From Lemma 2, we have that Var(Ck(G)) =
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O(n4 log n)E2
k . Using Chebyshev’s inequality,

PGn,p(Zj) < P
(∣∣njhEk − Ck(G

′)
∣∣ ≥ (njh − n(j+1)h

)
Ek

)
≤ O(n4 log n)E2

k

E2
kn

2jh(1− nh)2

=
O(n4−2jh log n)

(1− nh)2

∈ O

(
n4−2jh+ε

(1− nh)2

)
∈ O(n4−2jh+ε).

By Lemma 1,

PGn,p〈k〉(Zj) = PGn,p(Zj)
Ck(Zj)

Ek

≤ n(j+1)hPGn,p(Zj) < O(n4−j(h−1)+ε).

Hence,

PGn,p〈k〉(Z) ≤
∞∑

j=2

PGn,p〈k〉(Zj)

= O(n4+h+ε)
∞∑

j=2

O(n−jh)

= O(n4−h+ε)
∞∑

j=0

O(n−jh)

= O(n4−h+ε)O(1) = O(n4−h+ε). �

We now choose the h defining the set Z in the previous lemma to be sufficiently large

so that Z, the set of “bad” graphs, is sufficiently small.

Theorem 4. If there exists an algorithm A that finds a clique of size k = (1+ε) logb n

in Gn,p〈k〉 with probability 1/q(n), for a polynomial q(n), then A can find a clique of

the same size in Gn,p with probability 1/q′(n) for some polynomial q′(n).

Proof. Suppose q(n) = O(nj). Let Z = {G ∈ Gn,p〈k〉 : Ck(G) > n2(j+5)Ek}. By

Lemma 3, PGn,p〈k〉(Z) = O(n4+ε−j−5) = O(n−j−1+ε), for some constant ε > 0. Let Q

be the set of all graphs in Gn,p〈k〉 \ Z for which A finds a clique of size k. Then

PGn,p〈k〉(Q) = Ω(n−j)− PGn,p〈k〉(Z) = Ω(n−j)−O(n−j−1) = Ω(n−j).
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By Lemma 1,

PGn,p(Q) = PGn,p〈k〉(Q)
Ek

Ck(Q)
.

But Ck(Q) ≤ n2(j+5)Ek, so

Ek

Ck(Q)
≥ 1

n2(j+5)

and hence,

PGn,p(Q) ≥ Ω(n−j)n−2(j+5) = Ω(n−3j−10). �

Theorem 4 demonstrates that finding a clique of an appropriate size in a graph from

Gn,p〈k〉 is no easier than finding a clique of the same size in a graph from Gn,p.

Although we do not know whether it is indeed hard to find a clique of the appropriate

size in graphs from Gn,p, there has been no positive progress made in the 30 years

since the problem was first stated. In Chapter 5, we explore the use of finding hidden

cliques as the basis for cryptosystems and discuss the feasibility of such systems.
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Chapter 4

Other graph structures

As we saw in Chapter 3, under a certain conjecture, a clique can be hidden in a

random graph so that it is hard to find. In this chapter, we discuss the difficulty of

finding other graph theoretic structures hidden in random graphs.

4.1 Hamiltonian cycles

The decision problem of determining whether a graph has a Hamiltonian cycle is

NP-complete, and is referred to as the HAMCYCLE problem. A corresponding problem

is that of finding a Hamiltonian cycle in a graph.

A Hamiltonian cycle can be hidden in a random graph as follows. Choose a random

graph G ∈R Gn,p, and insert a Hamiltonian cycle H into G by selecting a random

permutation of the vertices and adding edges between subsequent vertices in the

permutation as necessary. We say that H is the embedded Hamiltonian cycle. LetHn,p

represent the probability distribution of graphs formed in this way. In the literature,

it is common to consider the case when p = d/n and we let Hn,d/n represent the

corresponding probability distribution.
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The expected degree of a vertex v in a graph G from Hn,d/n is:

E(deg(v)) = (n− 1)
d

n
+ 2 ·

(
1− d

n

)
= (n− 3)

d

n
+ 2

and the expected size of the edge set is

E(|E(G)|) =
n

2
E(deg(v)) =

(n− 3)d

2
+ n.

When compared to the expected size of the edge set of a graph from Gn,p as demon-

strated by equation 2.2, the number of edges added to complete the Hamiltonian

cycle is only n(1− p).

The threshold function of a Hamiltonian cycle in a random graph is demonstrated

in the following theorem, which is a combination of theorems VIII.2.9 and VIII.2.11

from [4]:

Theorem 5. Let p = (1/n)(log n + log log n + ω(n)). If ω(n) → +∞, then almost

every graph from Gn,p is Hamiltonian, and if ω(n) → −∞, then almost every graph

from Gn,p is non-Hamiltonian.

In the Gn,p model where p = d/n and d is a constant, it must be that ω(n) → −∞ as

n →∞, and so almost every graph from Gn,p is non-Hamiltonian.

There are many algorithms that find, with high probability, Hamiltonian cycles in

dense random graphs or regular sparse random graphs. For example, Bollobás et al.

[5] give an algorithm HAM with expected running time O(n4+ε), ε > 0 such that, for

M(n) = (n/2)(log n + log log n + cn),

lim
n→∞

P(HAM finds a Hamiltonian cycle in Gn,M) =


0, if cn → −∞,

e−e−c
, if cn → c,

1, if cn →∞.

As a result, if d ≥ (log n + log log n)/2, then HAM will find a Hamiltonian cycle in

a graph from Gn,p, p = d/n, with high probability. As well, Frieze [20] describes an
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O(n3 log n) algorithm which has high probability of finding a Hamiltonian cycle in a

regular random graph.

The algorithm of Bollobás et al. [5] above finds a Hamiltonian cycle in a dense random

graph. While all graphs from Hn,d/n are Hamiltonian, HAM will find with high

probability some Hamiltonian cycle in a graph from Hn,d/n, d ≥ (log n + log log n)/2,

it is not guaranteed that the cycle found will be the embedded Hamiltonian cycle. In

fact, it is likely that the cycle found will consist entirely of random edges.

The above result only applies for dense random graphs. However, Broder et al. [10]

give an O(dn3) algorithm which finds a Hamiltonian cycle in a graph from Hn,d/n

for any constant d > 0. Thus, it is not possible to build a cryptosystem on the

hardness of finding a hidden Hamiltonian cycle in a graph from Hn,d/n. A system in

which a message is hidden as a Hamiltonian cycle or in which authentication is proved

using knowledge of a hidden Hamiltonian cycle is not viable since any party can use

a polynomial time algorithm to find a Hamiltonian cycle and thus impersonate the

party in question.

4.2 Colourings

The decision problem of determining whether a graph can be coloured with k colours,

k ≥ 3, is NP-hard and is denoted k-COLOUR. (Determining whether a graph is 2-

colourable is easy.) There is a corresponding problem of finding a k-colouring for a

given graph, should one exist.

There are many possible models for constructing k-colourable random graphs, and

these are listed and their relationships are explored in Dyer and Frieze [14]. One

standard model which is easy to analyze and is frequently found in the literature is
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as follows. Let V = {1, . . . , n}. Each vertex is randomly assigned to one of k colour

classes with probability 1/k. For each pair (u, v) of vertices belonging to different

colour classes, the edge uv is inserted with probability p, while no edges are inserted

between vertices in the same colour class. Let Cn,p,k denote the probability distribution

of graphs formed in this way.

The Erdős-Rényi random graph model Gn, 1
2

is the uniform distribution of graphs.

However, it is not the case that Cn, 1
2
,k is the uniform distribution of k-colourable

graphs. This is because such a graph can normally be coloured with k colours in

many distinct ways.

While k-COLOUR is NP-hard in the worst case, there are many classes of k-colourable

random graphs for which it is possible to give a k-colouring in polynomial time.

Kučera [29] and Turner [43] give polynomial time graph colouring algorithms that

k-colour a graph from Cn,p,k with high probability. However, for the graphs for which

the given algorithms fail, the use of an algorithm with exponential running time is

required. The probabilities of failure for their respective algorithms are high enough

that the expected run time over Cn,p,k is not polynomial.

Dyer and Frieze [14] provide a polynomial time algorithm that colours a random k-

colourable graph with k colours with high probability, and, when amortized over all

graphs in Cn,p,k for fixed n, k, and p, has expected run time O(n2). They also prove

the following theorem:

Theorem 6 (Dyer and Frieze, 1989). Fix k and p, and let G ∈R Cn,p,k. Then

with high probability G has a unique k-colouring, and moreover the expected number

of different k-colourings of G is 1 + o(1).

Dyer and Frieze also provide similar results for other models of k-colourable random
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graphs.

There is a simple algorithm for k-colouring graphs from Cn,p,k for p ≥ n−1/2+ε, ε > 0,

which is described in Blum and Spencer [3]. The idea is as follows.

Theorem 7 (Blum and Spencer, 1995). Let p ≥ n−1/2+ε, ε > 0. There exists a

polynomial time algorithm that with high probability gives a k-colouring for a graph

chosen randomly from Cn,p,k.

Proof. Two vertices from the same colour class are expected to have more common

neighbours than two vertices from different colour classes. Suppose u and v are two

distinct vertices of the same colour. Each of the other n− 2 vertices has probability

1 − 1/k of being in a different colour class from u and v, and thus has probability

(1− 1/k)p2 of being a neighbour to both; hence u and v have on average (n− 2)(1−

1/k)p2 neighbours in common. If u and v are from different colour classes, then on

average they have (n− 2)(1− 2/k)p2 common neighbours.

For p ≥ n−1/2+ε, these probabilities are within a (1 + o(1)) factor of n2ε(1− 1/k) and

n2ε(1− 2/k) respectively. Let Xw be the indicator random variable for the event that

w is adjacent to both u and v; the Xw random variables are independent for different

values of w. Thus we can apply Chernoff bounds to X =
∑

w∈V \{u,v} Xw: for any

δ > 0,

P(X < (1− δ)E(X) or X > (1 + δ)E(X)) < 2e−δ2E(X)/3.

But E(X) = Θ(n2ε), so the probability on the right-hand side is so small that

∑
u,v∈V,u 6∼v

P(X < (1− δ)E(X) or X > (1 + δ)E(X)) = o(1)

where each term in the sum has an X corresponding to different starting vertices u

and v.
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Thus, with high probability all pairs of vertices in the same colour class have n2ε(1−

1/k)(1+ o(1)) common neighbours, and all pairs of vertices in different colour classes

have n2ε(1 − 2/k)(1 + o(1)) common neighbours. There exists a polynomial time

algorithm that can separate these two cases, and thus the colour classes can be de-

termined. �

Blum and Spencer [3] provide an extension of this basic technique that finds a k-

colouring for a graph from Cn,p,k, p ≥ n−1+ε, ε > 0, with high probability, and this

new algorithm runs in time O(kn2).

Hence the only possibility for basing a cryptosystem on colourings in random graphs

would seem to be for the case in which p ≤ n−1. There are no theoretical results

at present either demonstrating or prohibiting the existence of a polynomial-time

algorithm for this case. However, Petford and Welsh [41] report experimental results

of a randomized 3-colouring algorithm on tripartite random graphs. The algorithm

performs well on almost all edge probabilities, including very small probabilities p ≤

n−1, but has high running time on a range of edge probabilities which give average

vertex degree of approximately 5 or 6. Petford and Welsh [41] offer no theoretical

interpretation of this degenerate case.

Because there exist polynomial-time algorithms that find with high probability k-

colourings for random graphs chosen from Cn,p,k, for p ≥ n−1+ε, k ≥ 3, it is generally

infeasible to build a cryptosystem based on knowledge of a k-colouring in a random

graph. Although there is a small range of edge probabilities for which common algo-

rithms for k-colouring have been demonstrated experimentally to yield poor results,

there are no theoretical results confirming the hardness of k-colouring in this range

and are thus unsuitable for cryptographic purposes. For example, if one party A was

to authenticate itself to another party B by demonstrating a k-colouring of a graph
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GA which had been chosen from Cn,p,k, another party E could with high probability

impersonate A by finding a k-colouring using one of the algorithms described above.
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Chapter 5

Protocols

In Chapters 3 and 4 we explored the computational difficulty of finding hidden struc-

tures in quasi-random graphs. While it is easy to find hidden Hamiltonian cycles and

to provide k-colourings for k-colourable random graphs, it is conjectured to be hard

to find a hidden clique of an appropriate size. In this chapter, we explore various pro-

tocols built around hidden cliques in quasi-random graphs and in section 5.3 discuss

the practicality of graph-based protocols.

5.1 Zero-knowledge authentication

Knowledge of a hidden structure in a graph can be used as a proof of identity in an

authentication protocol. One party, A, can prove her identity to another party, B, by

demonstrating knowledge of a property of a particular graph known to correspond to

A. If it is hard to forge knowledge of that property, then B can be assured that no

one other than A can pass the test.

Consider the following basic protocol for authentication using hidden cliques. Suppose

A creates a graph GA ∈R Gn,p〈k〉 with hidden clique KA of size k = 3/2 logb n. If B

has an authentic copy of GA, then A can prove her identity to B simply by providing
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him with KA. Assuming finding a clique of size k in a graph from Gn,p〈k〉 is hard,

based on the results and conjectures of Chapter 3, only A can demonstrate a clique

of size k in GA.

This basic protocol has a major drawback. At the end of the protocol, B has complete

knowledge of KA and can now impersonate A in any test using the same graph GA.

If the only time A’s graph GA is used is in an interaction with B, for example to

login to B’s server, then it is acceptable for B to gain knowledge of KA. If, however,

A’s graph GA is widely distributed and used by a number of independent parties to

authenticate A, then it is unacceptable for B to gain any knowledge of KA. Thus, we

desire a system in which A can prove that she knows a clique of size k in GA without

revealing the actual clique KA. We now formalize this notion.

A zero-knowledge proof system, as described in section 2.5, is a solution to this

problem. Juels and Peinado [26] provide the following protocol in which A uses a

zero-knowledge proof to demonstrate knowledge of an appropriately-sized clique in

her public graph GA.

Algorithm 1 Zero-knowledge authentication using hidden cliques (näıve clique cre-
ation)

1: B retrieves an authentic copy of A’s key GA ∈R Gn,p〈k〉, which has a hidden clique
KA of size k = 3/2 log1/p n.

2: A chooses a random permutation π and sends commitments of the edges of G′ =
π(GA) to B.

3: B flips a coin c.
4: if c is heads then
5: A sends B decommitments of all of the edges of π(GA) along with the permu-

tation π.
6: B accepts if the decommitment of G′ matches the authentic copy of GA. Oth-

erwise, B rejects.
7: else if c is tails then
8: A sends B decommitments of the edges π(KA).
9: B accepts if the decommitments of π(KA) form a clique of size k. Otherwise,

B rejects.
10: end if
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The algorithm is repeated suitably many times with different random permutations

and coin flips so that B can be convinced that A has knowledge of a clique of size k

in GA.

In the algorithm above, A uses näıve clique creation for hiding the clique K, but the

protocol could be modified to use split näıve clique creation.

Assuming it is hard to find cliques of size k in random graphs from Gn,p, Theorem 4

implies that it is also hard to find a clique of size k in a graph from Gn,p〈k〉. Hence,

no one except A will have knowledge of a clique of size k in GA. Thus the protocol is

a computational zero-knowledge proof of knowledge under the conjecture. It should

be noted that this protocol relies on A sending commitments of the edges of a graph

to B.

5.2 Kučera’s generalized encryption scheme

Kučera [30] describes an encryption scheme based on hidden cliques in random graphs.1

More precisely, Kučera describes a generalized encryption scheme which is a proba-

bilistic encryption system in which some object may be an encryption of both 0 and

1 but the probability of an ambiguous encryption is low.

The idea of Kučera’s graph generalized encryption scheme is as follows. Let b be the

bit to be encoded. Let 0 < κ < 1
2

be a fixed parameter and let k = bnκc. A random

graph is constructed with an embedded clique of size k+b. Because it is possible that

a graph corresponding to an encryption of 0 could contain a clique of size k + 1, this

is a generalized encryption scheme. However, Kučera demonstrates that with high

probability the scheme is unambiguous.

1Kučera’s system is phrased in terms of independent sets, but for consistency with the rest of
this work we cite it in terms of cliques.
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Kučera also demonstrates that, with high probability, two common heuristic tech-

niques will not defeat the graph generalized encryption scheme. In the basic tech-

niques examined by Kučera, a clique is built up, vertex by vertex, as follows. In the

two heuristic techniques in question, the next vertex to be added is chosen either com-

pletely at random or chosen at random from among the vertices of highest degree; in

both cases, only vertices which are adjacent to all vertices already in the constructed

clique are considered for addition.

Because the security of Kučera’s graph generalized encryption scheme rests on the

difficulty of finding large hidden cliques in quasi-random graphs and, as described in

section 3.3.2, there are no results on the hardness of this problem, there are no results

on the infeasibility of breaking Kučera’s scheme.

Since this scheme uses cliques of size k = o(
√

n), the results of section 3.4 do not

apply. However, it should be noted that using very small hidden cliques of size

k ∈ [(1+ ε) log n, (2− ε) log n], ε > 0, is not feasible for an encryption scheme because

there are many cliques with sizes in that range; it is likely that a graph that is an

encryption of 0 will be an ambiguous encryption and contain a clique of size k + 1.

5.3 Security analysis

As cited in section 3.3.2, Kučera [30] demonstrates that certain heuristic algorithms

will asymptotically fail with high probability to find a clique of size k = o(
√

n) in

a graph from Gn,p〈k〉. This is just an asymptotic result, however. Brockington and

Culberson [9] report the results of some experiments to determine the effectiveness

of some algorithms for finding cliques embedded in random graphs with n = 1000

vertices.
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Brockington and Culberson [9] use three different clique hiding models. We have

described the first two, näıve clique creation and split näıve clique creation above.

When using the latter, Brockington and Culberson take advantage of the degrees of

freedom provided by tuning both parameters p and r in a Gn,(p,r)〈k〉 so as to minimize

the amount of information leaked by the difference in degrees between clique and

non-clique vertices at different stages of their algorithms. Even when maximizing the

use of tuning parameters to hide degree information, Brockington and Culberson’s

two basic algorithms are able to find hidden cliques of size as small as k = 16 at least

two-thirds of the time in graphs chosen from Gn,(p,r)〈k〉 with n = 1000 and average

vertex degree 1/2.

The best asymptotic algorithm for finding cliques is the näıve method, as described

in section 3.3.1, in which all subsets of vertices of size k are chosen; there are O(
(

n
k

)
)

such subsets. The following table summarizes values of n and the corresponding value

of
(

n
k

)
for the parameters p = 1/2, k = 3/2 log2 n:

n k
(

n
k

)
(approx.) |E|

500 14 284 1.2× 105

1000 15 2103 5.0× 105

2000 17 2131 2.0× 106

4000 18 2156 8.0× 106

30000 23 2256 4.5× 108

Figure 5.1: Worst-case running times for finding hidden cliques.

As seen in the table above, if p = 1/2 and n = 1000, the number of subsets to be

considered is approximately 2103. However, this is a very loose upper bound on the

amount of computation required to find a clique of size 15 in a graph from G1000,1/2〈15〉,

and in particular it is not the case in practice that finding cliques in graphs from the

family requires on the order of 2103 operations. According to Lenstra and Verheul

[32], searching through a space of 2103 possible solutions requires approximately 1017

years on a Pentium II 450MHz computer, whereas Brockington and Culberson [9]
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demonstrate that such cliques can be found with non-trivial probability very quickly.

Moreover, since the hidden clique is of the same size as the naturally occurring back-

ground cliques, there are often many cliques of the desired size. The experiments of

Brockington and Culberson [9] demonstrate that in graphs from G1500,1/2〈k〉, 11% of

the time, a particular algorithm finds a clique other than the explicitly hidden clique.

Although we can not give more precise estimates on the size of a graph needed to

render the problem of searching for hidden cliques infeasible, we can reasonably sug-

gest that an infeasible search would require a graph to have several thousand vertices.

With even the small number of 4000 vertices, the size of the adjacency matrix of the

graph is 1MB. Since the adjacency matrix is effectively a random string with each

bit present with probability 1/2, we cannot expect to compress the encoding of the

matrix to any significant degree. Thus, any protocol basing its security on graphs

with hidden cliques would require that at least 1MB of data be exchanged each time

a graph is exchanged. If, as in the zero knowledge protocol of algorithm 5.1, an

exchange needs to happen t times to reduce the probability of a party successfully

cheating to 2−t, then at least t MB of data need to be exchanged. If t is to be chosen

to match the current level of security in most of today’s secured Internet transactions,

which use RSA public key cryptography [42] with 1024-bit keys, t would be chosen

to be approximately 77 [32]. When compared with the 1024 bits needed to repre-

sent a comparable RSA key or the 163 bits needed for a comparable elliptic curve

cryptography key, exchanging 77MB of graph data is impractical.

Similarly, the graph generalized encryption scheme of Kučera [30] is impractical.

Recall from section 5.2 that Kučera’s scheme involves hiding a clique of size k+ b in a

random graph to encrypt a bit b. Using the same analysis as above, a graph of size at

least 4000 vertices, encoded by 1MB of data, is needed to encrypt a single bit. Most

practical cipher algorithms, including for example the Data Encryption Standard
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(DES), produce output that is the same size as the input (cf. Menezes et al. [36,

Chapter 7]). Thus, the graph generalized encryption scheme, which generates output

that is 8 million times larger than the input, is quite impractical.
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Chapter 6

Conclusions

We have explored the difficulty of finding hidden structures in random graphs, in

particular, of finding hidden cliques, hidden Hamiltonian cycles, and valid colourings,

and examined their suitability as the basis for a cryptosystem. As polynomial time

algorithms are known for solving the latter two problems, they are not suitable for

use as hard problems in cryptography.

The problem of finding a hidden clique in a random graph has some potential in terms

of the difficulty of the problem. We have shown that it is no easier to find a embedded

clique of an appropriate size hidden in a random graph than it is to find a clique in

the same size in a completely random graph, where edges in the random graph are

added with any constant non-trivial probability. Whether this latter problem can be

solved in polynomial time has been an open problem since 1976.

While it may be difficult to find hidden cliques of an appropriate size in random

graphs, it does not seem as this technique will be practical for real-world cryptography.

The amount of data required to encode a graph of size sufficiently large to prevent

brute-force attacks is prohibitive, especially when compared to the amount of data

exchanged in existing protocols.
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Nevertheless, we believe it is interesting to explore the relative difficulty of graph-

based problems, as many fundamental problems in computational complexity theory

are phrased in terms of graph structures. Whereas current cryptosystems base their

security on the conjectured difficulty of number theoretic problems, exploring the dif-

ficulty of graph problems may eventually allow cryptosystems to be based on problems

known to have infeasible computational complexity.

6.1 Open questions

1. The original open problem to give a polynomial time algorithm that finds a

clique of size (1 + ε) log n in a graph from Gn,p still stands. The results of

Chapter 3 extend this open problem to graphs from Gn,p〈k〉.

2. Can Theorem 4 be extended to larger cliques or to split näıve clique creation?

3. Petford and Welsh [41] describe a small range of edge probabilities for which

experimental evidence suggests that k-colouring random k-colourable graphs is

difficult. Can a theoretical explanation be given for this observation, and can

the observed difficulty of colouring such graphs be used with any reliability in

a cryptosystem?

4. Blum and Spencer [3] give a result indicating that k-colouring a certain class

of semirandom k-colourable graphs is difficult. However, the semirandom k-

colourable graphs in question can be generated by a party with unbounded

computational resources. Is there an efficient method for generating semiran-

dom k-colourable graphs that are still hard to k-colour?

5. Although finding hidden cliques may be difficult, other natural problems con-

cerning hidden graph structures, such as finding hidden Hamiltonian cycles

and finding k-colourings of k-colourable random graphs, are easy. Additionally,
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approximation algorithms for finding the size large cliques in a graph do not

provide nearly as good approximations as those for these other problems. Is

there something inherently more difficult about problems concerning cliques?

6. Are there any other graph structures which could be used as the hard problem

as the basis of a cryptosystem? Can any graph-based cryptosystem use data

structures of practical size?
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[8] G. Brassard, C. Crépeau, D. Mayers, and L. Salvail. Defeating classical bit

commitment schemes with a quantum computer, June 1998. URL http://xxx.

lanl.gov/abs/quant-ph/9806031.

[9] M. Brockington and J. C. Culberson. Camouflaging independent sets in quasi-

random graphs. In D. S. Johnson and M. Trick, editors, Cliques, Coloring,

and Satisfiability: Seconds DIMACS Implementation Challenge, volume 26 of

DIMACS Series in Discrete Mathematics and Theoretical Computer Science.

American Mathematical Society, 1996.

[10] A. Z. Broder, A. M. Frieze, and E. Shamir. Finding hidden Hamiltonian cycles

(extended abstract). In Proc. 23rd Ann. ACM Symp. on Theory of Comp., pages

182–189, 1991.

42

http://xxx.lanl.gov/abs/quant-ph/9806031
http://xxx.lanl.gov/abs/quant-ph/9806031
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