
Towards a Provably Secure DoS-Resilient Key
Exchange Protocol with Perfect Forward Secrecy

Lakshmi Kuppusamy, Jothi Rangasamy, Douglas Stebila, Colin Boyd, and
Juan Gonzalez Nieto

Information Security Institute, Queensland University of Technology,
GPO Box 2434, Brisbane, Queensland 4001, Australia

{l.kuppusamy,j.rangasamy,stebila,c.boyd,j.gonzaleznieto}@qut.edu.au

Abstract. Just Fast Keying (JFK) is a simple, efficient and secure key
exchange protocol proposed by Aiello et al. (ACM TISSEC, 2004). JFK is
well known for its novel design features, notably its resistance to denial-
of-service (DoS) attacks. Using Meadows’ cost-based framework, we iden-
tify a new DoS vulnerability in JFK. The JFK protocol is claimed se-
cure in the Canetti-Krawczyk model under the Decisional Diffie-Hellman
(DDH) assumption. We show that security of the JFK protocol, when re-
using ephemeral Diffie-Hellman keys, appears to require the Gap Diffie-
Hellman (GDH) assumption in the random oracle model. We propose a
new variant of JFK that avoids the identified DoS vulnerability and pro-
vides perfect forward secrecy even under the DDH assumption, achieving
the full security promised by the JFK protocol.

Keywords: Denial of service, Meadows’ cost-based framework, Just Fast Key-
ing, client puzzles, key agreement, perfect forward secrecy

1 Introduction

Denial-of-service (DoS) attacks that are mounted to exhaust the processing,
memory, or network resources of target systems have become a common occur-
rence. These attacks can easily disable servers, so it is important for the server to
detect and filter bogus connection requests as early as possible. Cryptographic
techniques such as authentication can assist a server in detecting bogus connec-
tions, but the computationally expensive operations involved in authentication
may open a new DoS vulnerability. Hence care must be taken to design a pro-
tocol that implements defense strategies to efficiently tackle DoS attackers and
to protect itself from exhausting the resources.

A number of DoS countermeasures such as client puzzles [3, 11, 20], stateless
connections [2] and gradual authentication [14, 19] are available for building DoS-
resilient protocols. Resistance to DoS attacks is the main design goal for network
protocols such as JFK [1], CA-RSA [8], IKE [10], IKEv2 [12], MIKE [13] and HIP
[15]. Recently, Stebila et al. [23] described a model for assessing DoS-resistance
in protocols by following the approach of Stebila and Ustaoglu [22]. They also
gave a generic construction for DoS-resistant protocols.

Just Fast Keying (JFK) is a simple, efficient and secure key exchange protocol
proposed by Aiello et al. [1]. JFK is well known for its novel design features,
including its resistance to DoS attacks. The designers of JFK provided a careful
analysis of its security properties but stopped short of providing a fully formal
security proof. They pointed out that the basic structure of JFK, what they
called the “cryptographic core”, already has a proof of its key exchange security
properties [6], and that the additional mechanisms of JFK beyond this core will
not degrade key exchange security.

The JFK designers also discuss formal approaches to other protocol prop-
erties, namely privacy and forward secrecy. However, they do not provide any
formal discussion of the DoS-resilience of JFK, one of its main properties. The
main technique for achieving DoS-resilience in JFK is the reuse of ephemeral
public keys, but this comes at the obvious expense of perfect forward secrecy.

Smith et al. [21] performed a detailed analysis of JFK’s DoS resistance using
Meadows’ cost-based modelling framework [14] and identified two DoS attacks
against the protocol that are possible when an attacker is willing to reveal the
source IP address. The first attack was found with the direct application of
Meadows’ cost-based framework and the second attack was possible considering
the presence of co-ordinated DoS attackers.

Contributions. The main goal of our work is to improve the DoS resistance of
JFK, although our approach can be applied to any Diffie-Hellman (DH)-based
protocols. Our contributions can be summarised as follows:

– We show that the security of JFK protocol with ephemeral DH reuse appears
to require the GDH assumption in the random oracle model.

– We also analyse the JFK protocol in detail with the help of Meadows’ cost-
based framework and identify a new DoS vulnerability in JFK which is pos-
sible in the presence of co-ordinated DoS attackers.

– We propose a variant of JFK that efficiently generates fresh ephemeral keys
from precomputed values using a technique of Boyko et al. [5] up to 3.4
times faster than in JFK. The proposed JFK variant not only avoids the
identified DoS attack but also achieves both the security level promised by
the original JFK protocol and perfect forward secrecy. We give a detailed yet
simple security analysis of the resulting BPV-JFK protocol in the Canetti-
Krawczyk model under the DDH assumption in the standard model.

– We implement the generic technique of Stebila et al. [23] in JFK and BPV-
JFK to achieve strong DoS resilience in the Stebila et al. model.

A comparison of the security properties of JFK and the protocols proposed in
this paper appears in Table 1.

2 Just Fast Keying Protocol and its DoS Vulnerabilities

Aiello et al. [1] presented two variants of the JFK protocol namely JFKi and
JFKr, both with same level of DoS resistance; we focus on the JFKi variant,
which appears in Figure 1.

Protocol Cost-based Security Perfect Forward DoS-
vulnerability assumptions Secrecy resilience

JFK [1] Yes GDH, ROM Only with no reuse No
DoS-JFK (§ 2.5) No GDH, ROM Only with no reuse Yes
BPV-JFK (§ 3) No DDH Yes No

DoS-BPV-JFK (§ 3.6) No DDH Yes Yes

Table 1. Comparison of properties of JFK-based protocols

1. I→ R : N
′
I , gx, ID′R

2. R→ I : N ′I, NR, gy, grpinfoR, IDR, SkR [gy, grpinfoR], token

3. I→ R : NI, NR, gx, gy, {IDI, sa, SkI [N
′
I, NR, g

x, gy, IDR, sa]}Ke
Ka

,
token

4. R→ I : {SkR [N ′I, NR, g
x, gy, IDI, sa, sa

′], sa′}Ke
Ka

token = HHKR(gy, NR, N
′
I, IPI), Ke = Hgxy (N ′I, NR, 1)

Ka = Hgxy (N ′I, NR, 2), Kxy = Hgxy (N ′I, NR, 0)

NI, NR Random nonces chosen by I and Rrespectively.
H(·) Unkeyed hash function.
N ′I Initiator’s initial nonce, computed as H(NI).
g Generator of a multiplicative group of order q.
gx, gy Public key of the initiator and the responder.
HKR Transient, hash key known only to the responder.
HK(·) Keyed hash function (secure MAC) using key K.
IPI Initiator’s network address.
IDI, IDR Information to identify I and R public keys.
ID′R Initiator indicates to the responder which authentication information

(e.g. certificates) should be used.
sa, sa′ Information used to establish a security association.
grpinfoR Groups, algorithms and hash functions supported by the responder,.
SkI [·] Digital signature computed by I using long-term secret key kI.
SkR [·] Digital signature computed by R using long-term secret key kR.

{·}Ke
Ka

Encryption using key Ke and generating a message authentication
code (MAC) over the resultant cipher text using key Ka.

kxy Session key computed using shared secret gxy.

Fig. 1. JFKi protocol and its message components

The main technique for improving efficiency in the JFK protocols is for the
participants to reuse their Diffie-Hellman (DH) exponentials (gx and gy) across
multiple sessions with different parties. In the case of the responder, this tech-
nique drastically reduces the computational load by avoiding the exponentiation
cost due to the generation of new gy for each session and by allowing the sig-
nature SkR

[gy, grpinfoR] to be kept constant as long as the DH exponential is
reused. Unfortunately, this technique eliminates forward secrecy since y becomes
part of the long-term key. Interestingly, JFK with ephemeral DH reuse achieves
adaptive forward secrecy (AFS), the term defined by Aiello et al. [1] as below:

Definition 1 (AFS). If an adversary knows the DH exponent during the time
period ti+1 and if all the session keys generated during previous time periods
t0, t1, . . . ti remain secure, then the protocol is said to achieve AFS.

2.1 Smith et al.’s Analysis of JFK in Meadows Framework

One of the design features of JFK is to delay the computational commitments at
the responder until the initiator reveals the IP address. Smith et al. [21] argued
that the protocols should resist DoS attacks given the ready availability of IP
addresses and in the presence of the adversary willing to reveal the source IP
address. A direct application of Meadows’ cost-based framework to the JFK pro-
tocol captured the first attack. The second attack was identified when assessing
DoS resistance of the protocol in the presence of coordinated attackers.

1. I→ R: compnonce1(NI), N
′
I = hash1(NI) , genexp1(gx) ||

N ′I, g
x || vergroup(gx), accept1

2. R→ I: compnonce2(NR), token = genmac1HKR(gy, NR, N
′
I, IPI) ||

N ′I, NR, g
y, grpinfoR, IDR, sig1 = SkR [gy, grpinfoR], token ||

versig1, accept2
3. I→ R: genDH1(gxy), K = compKeys1(N ′I, NR, g

xy),
s = gensig2(N ′I, NR, g

x, gy, IDR, sa), C1 = encrypt1K(IDI, s, sa) ,
C = genmac2K(C1) || NI ,NR, gx, gy, token, C1, C ||
N ′I = hash2(NI), ver1(token = genmac3HKR(gy, NR, N

′
I, IPI)),

genDH2(gxy), K = compKeys2(N ′I, NR, g
xy),

ver2(C = genmac4K(C1)), decrypt1K(C1), versig2(s), accept3
4. R→ I: W = gensig3(N ′I, NR, g

x, gy, IDI, sa, sa
′), D1 = encrypt2K(W, sa′) ,

D = genmac5K(D1) || D1, D || ver(D = genmac6K(D1)),
decrypt2K(D1), versig3(W), accept4

compnonce : selecting a random bit string. δ(compnonce) = cheap.
hash : computing a hash value. δ(hash) = cheap.
genmac : generating a MAC that is based on a keyed hash function.

δ(generatemac) = medium.
gensig : generating a digital signature. δ(gensig) = expensive.
genexp : computing a DH ephemeral key. δ(genexp) = expensive.
genDH : generating a shared secret. δ(genDH) = expensive.
versig : verifying a digital signature. δ(versig) = expensive.
vergroup : verifying that a given DH value belongs to an acceptable group.

δ(vergroup) = medium.
compKeys : computing the keys for encryption and authentication is based

on a keyed hash function. δ(compKeys) = medium.
encrypt : encrypt the message using symmetric key. δ(decrypt) = medium.
decrypt : decrypt the message using symmetric key. δ(decrypt) = medium.

Fig. 2. Annotated Alice-and-Bob Specification of JFKi

Message Processing Costs in JFK. Meadows used the Alice-and-Bob specifi-
cation style (for more details refer to Appendix A) to show how messages are
processed during the protocol execution. In Figure 2, the annotated Alice-and-
Bob specification of JFK protocol is provided [21]. The cost-based framework
assigns cost to every action performed by the communicating principals. The
cost for performing a particular action is defined to be an element in the set
S = {cheap,medium, expensive} [21]. The cost function δ (defined in [21]) asso-
ciated with performing the following actions also appears in Figure 2.

The public-key validation (vergroup in Figure 2) should not be expensive
to avoid DoS-attack. Since the adversary is capable of spoofing messages and
signatures for which verifications result in failures we have δ(spoof) = cheap.

2.2 A New DoS Vulnerability in JFK

The main motivation behind the reuse technique in JFK is to protect the re-
sponder from a certain type of DoS attack. However, the re-using technique
introduces an attack we describe in this section. Smith et al. identified a second
DoS attack on JFK under the assumption that both the initiator and the respon-
der are reusing their ephemeral DH exponentials. However a similar type of DoS
attack is possible in the case where the initiator does not reuse the ephemeral
DH exponential while the responder reuses its ephemeral DH exponential.

To be precise, the initiator generates gx for the first session and then com-
putes g2x, g3x, . . . for further sessions using the previously computed DH values.
In this way, the ephemeral DH values of the attackers looks different. On the
other hand, the responder computes gy once and reuses it for all sessions it
participates during a time period. In this attack, the goal of the attackers is to
trigger the responder to perform the expensive signature verification versig2.

The responder performs computationally expensive operations like genDH2
and versig2 only in step 3 of the protocol (Figure 2). To make the responder
engage in signature verification versig2, an attacker must have performed medium
to expensive operations such as genMac2, encrypt1, genexp1, genDH1 and gensig2.

Though a DoS attacker is capable of sending a spoof signature spoofgensig2
instead of gensig2, it must perform expensive computations such as genexp and
genDH1 to convince the responder to perform up to versig2 computation. If an
attacker can somehow decrease the cost of computing genexp and genDH1, then
it can cause the responder to perform many expensive versig2 computations.
Considering the presence of coordinated initiators, the cost for performing genexp
and genDH1 computations can be amortised across all attackers resulting in
many cheaply generated communications.

2.3 Cost Calculations

We follow Meadows’ framework modified by Smith et al. [21] to demonstrate
the impact of sharing Diffie-Hellman values by a group of coordinated initiators
and analyse DoS susceptibility. For further details of the notations used in this
section, refer to Appendix A.

Assume that there are n coordinated initiators/attackers who generate gx and
multiply gx n − 1 times to compute the remaining n − 1 Diffie-Hellman values
say g2x, g3x, . . . gnx. The coordinated initiators engage in protocol runs with the
responder that is currently re-using its Diffie-Hellman value gy for reducing its
computational burden. The initiators compute shared secrets gxy, . . . gnxy in a
similar way as above. As a result, the cost for computing genexp in message 1
and genDH in message 3 are amortised across all attackers. For larger values of
n, the attackers cost function for sharing genexp denoted by φ(shareexp) is:

φ(shareexp) =
1

n
× φ(gx) + (n− 1)× φ(modmul)

=
1

n
× expensive + (n− 1)× cheap = cheap

as computing modular multiplication φ(modmul) is cheap. The cost for sharing
genDH is φ(shareDH) = cheap.

Hence the attack cost function Θ for the attacker in constructing n valid-
looking third messages to convince the responder to perform up to n decrypt1
operations and proceed with n versig2 operations is dominated by events of
medium costs. Hence the attacker’s total cost for performing a single decrypt1
operation in order to trigger the responder to proceed with versig2 is:

Θ(decrypt1) =φ(shareDH) + δ(compKeys1K) + φ(spoofsig)

+ δ(encrypt1) + δ(genmac2) = medium (1)

On the other hand, to detect that the n signatures are spoofed, the respon-
der does the following computation n times including hash2, genmac3, genDH2,
decrypt1, and versig2. Hence a single message processing cost δ′(versig2) for the
responder is dominated by events of two expensive costs:

δ′(versig2) = δ(hash2) + δ(genmac3) + δ(genmac4) + δ(genDH2)

+ δ(compKeys2) + δ(decrypt1) + δ(versig2)

= expensive (2)

From Equations (1) and (2), we see that (δ′(versig2), Θ(decrypt1)) which is equal
to (expensive,medium) does not belong to the tolerence relation T defined in
[14] and in Appendix A; hence the protocol is vulnerable to a DoS attack.

2.4 Basic Security of the JFK Protocol

Aiello et al. [1] compared the basic JFK protocol with the ISO 9798-3 protocol.
Since the ISO 9798-3 protocol is SK-secure in the UM model under the DDH
assumption, they argued that the JFK protocol inherits the same security. The
main design feature of the JFK protocol is that the responder can reuse its
ephemeral DH key when it is under attack. If the security of the basic JFK (ISO
9798-3) protocol is analysed with the assumption that the responder reuses its
ephemeral DH key, then its SK security may not be reduced to DDH assumption.

Moreover, Aiello et al. argued that JFK protocol with DH reuse achieves
AFS security and identity protection under the combined H/DDH assumption
(where H is a pseudo-random function) along with secure signature, encryp-
tion and MAC. Unfortunately, their assumptions are true only when they prove
the security in a weakened model which considers only the presence of passive
adversaries. In this case, JFK achieved AFS security only against passive adver-
saries. To prove JFK security against active adversaries, their assumptions are
not enough as discussed above. We will see in section 3.4 that JFK can be shown
secure using GDH assumption.

2.5 Resisting Other Type of DoS Attacks in JFK

Note that in JFK protocol, upon receiving third message, the responder first
computes the shared secret gxy, next verifies the MAC, and finally verifies the
signature on the decrypted message. Therefore, as seen in the described DoS at-
tack on JFK, if the responder is reusing its ephemeral DH key gy, then attackers
can compute valid shared secrets of the form gmxy without performing expo-
nentiations. With these efficiently generated keys they can trigger the responder
perform two expensive operations, namely genDH2 and versig2 by sending fake
signature with valid MACs. This attack could be thwarted if a responder can
set a fresh ephemeral DH key in an efficient manner for each session which led
the attacker to perform an exponentiation to compute the shared secret gxy for
each session in order to succeed in the attack.

Otherwise to avoid the exponentiation cost, the attacker can take another
approach: do not compute the shared secrets and send bogus MACs in the third
message. Here the attacker’s goal is not to cause the responder perform up to
versig2, but up to the expensive genDH2 operation. Unfortunately, JFK will
be vulnerable to this DoS attack since the protocol requires the responder to
compute the shared secret gxy first, even to verify the MAC on the received
message. Therefore in the JFK protocol the attacker, without computing the
shared secret, can cause the responder to proceed up to the genDH2 operation.
However it is easy to avoid such an attack by incorporating client puzzles in
the protocol provided that the cost for computing the puzzle solution should be
equal to or higher than the cost for performing genDH2 and versig2 operations.
By verifying the puzzle solutions in an efficient manner the responder ensures
that the cost for the initiator/attacker will be much higher than that of the
responder at any stage of the protocol.

3 BPV-JFK

Although adding certain type of client puzzles with JFK (resulting in a protocol
we call DoS-JFK) can thwart the above mentioned DoS attacks, we propose a
new protocol, which we call BPV-JFK, for the following reasons. First, JFK
with ephemeral key reuse can be proven under the GDH but not under the
standard DDH assumption as claimed by the JFK designers; in this case, the

security analysis will have to be in the random oracle model. Second, JFK with
ephemeral key reuse does not achieve perfect forward secrecy, but gives AFS as
per Definition 1. With BPV-JFK, we not only achieve the full security promised
by the original JFK protocol but achieve perfect forward secrecy. Interestingly,
by computing a fresh ephemeral DH value for each session in an efficient manner
and by adding client puzzles to BPV-JFK, we avoid the above mentioned attacks.

3.1 BPV Generator

We use a technique due to Boyko et al. [5] that enables the responder to compute
gy with fewer modular multiplications (compared to a full exponentiation).

Definition 2 (BPV Generator). Let p be a DSA modulus such that the prime
q divides p− 1. Select a random element g of order q in the multiplicative group
Z∗p For integer parameters N ≥ ` ≥ 1, the BPV generator generates pairs of the

form (i, gi) as follows:

BPV-Pre: Pre-processing Generate N random integers x1, x2, . . . xN ∈ Zq.
Compute Xi = gxi mod n for each i and store the pair (xi, Xi) in a table.

BPV-Gen: Pair generation Whenever a pair (y, gy) is needed, generate a
random set S ⊆R {1, . . . , N} such that |S| = `. Compute y =

∑
j∈S xj

mod q. If y = 0, stop and generate S again. Otherwise compute gy =∏
j∈S g

xj mod n and return (y, gy).

In [16], Nguyen et al. presented the extended BPV generator (EBPV) which
is exactly the BPV generator for certain parameter choices. Using the following
theorem, they established the security of some discrete logarithm based signature
schemes that use EBPV under adaptive chosen message attack . The theorem
shows that for a fixed q, with overwhelming probability on the choice of xi’s,
the distribution of the output y of the BPV generator is statistically close to
the uniform distribution on Zq. Nguyen and Stern presented a similar result
in [17]. In particular, a polynomial time adversary cannot distinguish the two
distributions for appropriate choices of N and `. Possible N and ` values are
listed in Section 3.3.

Theorem 1. Let q be a prime, and let N ≥ ` ≥ 1. Then,

1

qN

∑
x∈ZN

q

∑
y∈Zq

∣∣∣∣∣∣ Pr
S⊆[1,N]:|S|=`

∑
j∈S

xj ≡ y mod q

− 1

q

∣∣∣∣∣∣ ≤
√
q/

(
N

`

)
(3)

Moreover, there exists a c > 0, such that the following holds with probability
at least 1 − 2−cN . If x1, . . . , xN are chosen independently and uniformly from
[0, q − 1] and if y =

∑
j∈S xj mod q is computed from a random set S ⊆ [1, N]

of ` elements, then the statistical distance between the distribution of y and the

uniform distribution is bounded by
√
q/
(
N
`

)
.

Intuition on Theorem 1. Note that this result holds regardless of whether the
pre-computed xi’s are known to a distinguisher or not. In other words, even if a
distinguisher knew from the xi’s which elements of Zq were more (or less) likely
to be generated by the BPV generator, these elements are still generated only
with negligibly more (or less) frequency compared to uniform. For example, the
theorem implies that for appropriate choices of the N and ` values, the BPV
generator outputs almost all the elements of Zq and the proportion of elements
not output by the BPV generator is very small.

To see this, fix random x1, . . . , xN . Let z be the proportion of elements of
Zq which are output by the BPV generator for these xi’s. That is, for qz of the
elements of Zq, there exists a subset of size ` of {x1, . . . , xN} that sum to that
element, whereas for q(1− z) of the elements no such subset exists. Suppose (for
simplicity) that each one of the qz elements of Zq that is output is output with
equal frequency (namely, 1/qz). Then consider inequality (3) and substitute:√

q/

(
N

`

)
≥ 1

qN

∑
x∈ZN

q

∑
y∈Zq

∣∣∣∣∣∣Pr

 ∑
j∈S:|S|=`

xj ≡ y mod q

− 1

q

∣∣∣∣∣∣
=

1

qN

∑
x∈ZN

q

(
qz

∣∣∣∣ 1

qz
− 1

q

∣∣∣∣+ q(1− z)
∣∣∣∣0− 1

q

∣∣∣∣) = 2(1− z)

⇒ z ≥ 1− 1

2

√
q/

(
N

`

)

For appropriate choices of N and `,
√
q/
(
N
`

)
can be made negligibly small, so z

can be made very close to 1. In other words, the proportion of elements of Zq that
are output by the BPV generator is very close to 1. Hence the theorem implies
that the BPV generator outputs almost all the elements of Zq with almost same
probability.

3.2 The BPV-JFK Protocol and its Security Analysis

We now replace the reuse technique in the JFK protocol with the BPV generator
to generate new ephemeral DH value gy for each session efficiently. We denote
the resulting protocol, depicted in Figure 3, as BPV-JFK. The rest of the secu-
rity features, such as inclusion of identity protection, addition of encryption to
protocol and anti-replay cache, follow directly from the JFK design [1].

Aiello et al. [1] analysed JFKi protocol in two phases. In the first phase, Aiello
et al. analysed the basic cryptographic core of the JFKi protocol and in the
second phase, they analysed the additional security features implemented in the
protocol. Since our BPV-JFK protocol is similar to the JFKi protocol, we follow
the approach of Aiello et al. and separate the analysis of the basic cryptographic
core of the BPV-JFK protocol from the analysis of the complete BPV-JFK
protocol which has additional security features. As the security features are
already well analysed by Aiello et al., we do not repeat their security analysis

Initiator I Responder R

Run BPV pre-processing step to
generate the N pairs (xi, Xi)
Long term secrets: (xi, Xi)

random x,NI

compute N ′I, g
x gx, N ′I, ID

′
R−−−−−−−−−−−−→ random NR

Run BPV pair generation step
gy, G, to compute (y, gy)

N ′I, NR, IDR, token←−−−−−−−−−−−− store y, compute token
compute

SH = H(gxy, I,R), F,
NI, NR, g

x, gy, F, token−−−−−−−−−−−−→ compute N ′I,
session key Kxy verify token

generate SH = H(gxy, I,R),verify F

verify sig
NI, NR, g

x, gy, sa, sig←−−−−−−−−−−−− generate sig, session key Kxy

token = MACHKR(gy, NR, N
′
I, IPI), Ke = HSH(N ′I, NR, 1), Ka = HSH(N ′I, NR, 2),

Kxy = HSH(N ′I, NR, 0), G = grpinfoR, F = {IDI, sa, SkI [N
′
I, NR, g

x, gy, IDR, sa]}Ke
Ka

,

sig = {SkR [N ′I, NR, g
x, gy, IDI, sa, sa

′], sa′}Ke
Ka

Fig. 3. BPV-JFK protocol

and analyse only the basic BPV-JFK protocol. In this section, we first analyse
the security of the basic BPV-JFK protocol in Canetti-Krawzyck model [6] and
show that the basic BPV-JFK is SK-secure in the unauthenticated link model
(UM). Refer to [6] for a detailed analysis of the CK01 model.

To resist other type of DoS attacks described in Section 2.5, we follow the
approach of Stebila et al. [23] to turn BPV-JFK into a DoS-resistant protocol.
We call the resultant protocol DoS-BPV-JFK and show in Section 3.6 that DoS-
BPV-JFK in Figure 5 satisfies the definition of Stebila et al..

Basic BPV-JFK protocol and its Security Analysis. The basic BPV-
JFK protocol is depicted in Figure 4. The responder computes y and gy using
the ` random pairs (xi, Xi) as in the BPV pair generation step. We prove in the
following theorems that the basic BPV-JFK is SK-secure in the UM with PFS
if the DDH assumption holds.

Definition 3 (Decisional Diffie-Hellman (DDH) assumption). Let k be
a security parameter. Let g be an element of order q in Z∗p for primes p and q
such that q|p − 1 Then the probability distributions of D0 = {〈p, g, gx, gy, gxy〉 :
x, y ←R Zq} and D1 = {〈p, g, gx, gy, gz〉 : x, y, z ←R Zq} are computationally
indistinguishable.

Remark 1. Note that the responder requires only the value y to compute the
shared secret gxy in future. Hence it stores only y for each session but not the `

1. I→ R : NI, g
x, IDI

2. R→ I : NI, NR, gy, SkR [NI,NR, g
x, gy, IDR]

3. I→ R : NI, NR, SkI [NI,NR, g
x, gy, IDI]

shared session secret :σ = gxy

Fig. 4. Basic BPV-JFK protocol

pairs (xi, Xi) as they are already stored in the long-term table. Hence the session
state reveal or session corruption query outputs the value y and session key (if
it is computed) that are stored in the responder memory.

Theorem 2 (SK-security of BPV-JFK in AM). If G is a group where the
DDH assumption holds, then the basic BPV-JFK protocol (without signatures)
is SK-secure in the authenticated links model (AM).

Proof. During the protocol execution, if both the uncorrupted parties Pi and
Pj complete the protocol, then they compute the same shared secret gxy. Hence
the first requirement of SK-security definition, namely correctness (refer to [6])
is satisfied.

Let A be an adversary against basic BPV-JFK protocol. Using A , we can
construct an adversary B that can distinguish between D0 and D1. The distin-
guishuer B is given a DDH challenge tuple (p, g, gu, gv, gw) chosen from D0 or
D1 with probability 1/2 as input.

Assume that B creates an AKE experiment that involves n honest parties
Pi, i = 1, . . . , n and the adversary A . Each party can be activated to participate
in at most s AKE sessions. Among all n parties, B randomly selects one party,
call it Pj . Assume that Pj plays the role of the responder in all its sessions. For all
parties activated as responders, B runs the BPV pre-processing step to compute
the corresponding long-term secret pairs of (xi, Xi), i = 1 . . . N as described in
the protocol. Also B selects a random session denoted by s∗ among the sessions
where Pj plays the role of the responder. Let Pi be the initiator to the session s∗

which could be either at Pi or Pj . Except for session s∗, B executes all session
establishments by following the protocol specification.

When A corrupts a party other than Pi and Pj , B submits the secrets
possessed by the party. If A issues a corrupt query to either of the parties Pi

and Pj then B declares failure.
Assume that a session s′ 6= s∗ is activated between two uncorrupted parties

Pk (initiator) and Pj . In this case B can compute the shared session key (since
the ephemeral DH public keys of Pk and Pj are set by B) of s′. If s′ is corrupted
by A , then the adversary B submits the session key to A . Suppose that a session
s′′ 6= s∗ is activated between the adversary controlled initiator Pm (initiator) and
the responder Pj . Now B can compute the session key gxy even if it does not
know x.

For the test session s∗, B assigns the DDH challenge values gu and gv in the
ephemeral public keys of parties Pi and Pj respectively. B declares failure and

stops the experiment if A tries to corrupt the party Pi or Pj and the session
s∗. For the test query issued by A , B submits gw to the adversary. A continues
with the experiment even after the test query, but it is not allowed to expose
the test session. At the end of the experiment A stops and returns a bit b′ as
its guess.

Analysis. Provided that parties the Pj or Pj or the session s∗ are not corrupted,
the AKE experiment simulated by B is perfect except with negligible probability.
With probability 1/n, B selects Pj as the responder of the session s∗. The event
that A selects s∗ as test session happens with probability at least 1/s. For the
test session, the ephemeral public keys of the parties are not generated using
BPV pair generation step. By Theorem 1, the statistical distance between the
computed y and ephemeral secret of the assigned challenge v is bounded by√
q/
(
N
`

)
.

The adversary A was provided with gw as answer to the test query. In this
case, if the challenge tuple belongs to the distribution D0, then the actual session
key was provided to A . Otherwise, if the tuple belongs to the distribution D1,
then the response was a random key. Whenever A wins the experiment with
probability 1/2 + ε for non-negligible ε, the adversary B also distinguishes be-

tween the two distributions D0 and D1 with probability 1/2 + ε/ns +
√
q/
(
N
`

)
since the adversary chooses s∗ as test session and Pj as the responder with prob-
ability 1/ns. ut

Theorem 3 (SK-security of BPV-JFK in UM). The basic BPV-JFK pro-
tocol is SK-secure in the unauthenticated links model (UM).

Proof. We showed in Theorem 2 that the basic BPV-JFK protocol without sig-
natures is SK-secure in the AM. Then the proof follows by Theorem 6 in [6] which
states that any protocol which is SK-secure in the AM can be transformed in
to a SK-secure protocol in the UM by including authenticators such as digital
signatures. ut

Perfect Forward Secrecy (PFS). Except for the generation of gy the basic
BPV-JFK protocol in Figure 3 is the same as the ISO 9798-3 protocol (the
basic JFK protocol without gy reuse). In the basic BPV-JFK protocol, the BPV
generator is used to compute gy whereas in the ISO 9798-3 protocol a random
y is used to compute gy.

The ISO 9798-3 protocol is SK-secure [6] in the UM model with PFS if the
signature scheme is secure, the pseudo-random function H is secure and the DDH
assumption holds. We now provide a proof sketch using game hopping technique
that the basic BPV-JFK is SK-secure in the UM model with PFS.

Let Ei be the event that the adversary wins in game Gi. Assume that the
long-term secret N pairs (xi, Xi) of the responder are revealed. Assume that G0

is the game in which the BPV generator is used to compute gy in the BPV-JFK

protocol. Now we define game G1 which is same as game G0 except that a ran-
dom y is used to compute gy. An adversary that can distinguish G0 from G1

is effectively a distinguisher for the BPV generator in Theorem 1. Note that,
whereas the proof of security in Theorem 2 did not have the xi revealed to the
adversary, they are revealed to the adversary in the PFS argument. Nonethe-
less, Theorem 1 still applies, and the games are statistically indistinguishable:

|Pr(E0) − Pr(E1)| ≤
√
q/
(
N
`

)
, which is negligible for appropriate choices of N

and `.
Now, in G1, the modified BPV-JFK protocol is same as the ISO 9798-3

protocol with the pre-computed N pairs which are independent of the different
gy values used to compute the session keys. If the adversary wins game G1, then
the challenger breaks the PFS security of the ISO protocol. The ISO protocol was
proven to have PFS [6], so Pr(E1) is negligible, and hence Pr(E0) ≤ negl(k) +√
q/
(
N
`

)
.

Remark 2. In the BPV-JFK protocol, the responder has to store the value y
for each session. This small amount of storage for each session is not a resource
constraint since a very small fraction (less than one one-millionth, say) of the
responder’s memory will be used to store such values when it executes thousands
of key exchange sessions per second. Since the BPV-JFK protocol focus on min-
imizing the computational based expenditure to the responder, the amount of
storage needed for each session is considered to be minimal.

3.3 Efficiency Comparison and Parameter Sizes

Table 2 compares the general efficiency of BPV-JFK with the JFK protocol,
both when JFK reuses the ephemeral public keys and when it does not.

Protocol Efficiency technique Server operations Perfect Forward
in message 1 Secrecy

JFK with no reuse None 1 mod. exp. Yes
JFK with reuse Reuse of gy None No

BPV-JFK BPV generator
`− 1 mod. add.,

Yes
`− 1 mod. mul.

Table 2. Efficiency comparison of JFK and BPV-JFK

The specific efficiency of the BPV-JFK protocol depends on the number of
elements ` in the random set S the responder choose to compute (y, gy) in the
BPV pair generation step. The responder may prefer to reduce the number of
online modular multiplications required for generating gy. Hence it might be ap-
propriate for the responder to choose a bigger value of N (polynomial in log q) to
make ` smaller. Values for N and ` for a 160-bit q and their corresponding BPV-
Pre and BPV-Gen running time are presented in Table 3. We ran the experiment

on a single core of a 3.06 GHz Intel Core i3 with 4GB RAM, compiled using gcc

-O2 with architecture x86 64. The big integer arithmetic from OpenSSL 0.9.8r
is used to implement the software.

Runtime

N `
√
q/
(
N
`

)
BPV-Pre (s) BPV-Gen (ms)

211 = 2048 48 2−82 0.939 0.226
212 = 4096 40 2−80 1.892 0.196
213 = 8192 35 2−81 3.758 0.168
214 = 16384 31 2−81 7.527 0.156
216 = 65536 26 2−83 30.148 0.134

Table 3. Parameter sizes, security bound for Theorem 1, and runtime for BPV gen-
erator with 1024-bit modulus and 160-bit exponent. For comparison, a single 160-bit
modular exponentiation takes 0.461 ms.

Our experimental results verify that computing gy using the BPV-Pre and
BPV-Gen algorithms is faster than performing a 160-bit modular exponentiation
to compute gy from a random y (which requires 0.461 ms). The advantage factor
of BPV generation over modular exponentiation based on the parameter values
listed in Table 3 is between 2 and 3.4. For example, if we choose N = 214 and
` = 31, then gy can be computed 3 times faster using the BPV generator.

3.4 On the Security of JFK

If the security of the basic JFK (ISO 9798-3) protocol is analysed with the
assumption that the responder reuses its ephemeral DH key, then the security
might not be reduced to DDH assumption for the following reason: consider
the scenario as in session s′′ of Theorem 2, where A controls the initiator Pm

and activates the session s′′ with responder Pj . Since the responder reuses the
ephemeral DH key gy for several sessions, the adversary B assigns one of the
DDH challenge gv in the place of gy. If a session key reveal query is issued by
A , then B cannot compute the session key as it does not know both x and y.

The adversary B simulates the environment perfectly only if it can respond
to this query consistently. Here the DDH assumption itself is not enough and
therefore the security proof for the basic JFK with reuse technique may require
the GDH assumption and the session key is set as H(gxy, I,R). If H is a random
oracle and the adversary has access to DDH oracle, then the session key reveal
queries issued for session s′′ could be answered correctly. Hence if H is a random
oracle and G is a group where GDH assumption holds, then the basic JFK
protocol (with gy reuse) is SK-secure in the UM model.

3.5 Cost Calculations for BPV-JFK.

Now, we calculate the cost functions for BPV-JFK protocol and show that the
protocol is resistant to the DoS-attack described in Section 2.2. From Equa-

tions (1) and (2) it is clear that the attacker cost function for mounting a co-
ordinated DoS-attack on JFK and the responder cost function to process the
fake message does not satisfy the tolerance relation T . In this section, we calcu-
late the cost functions for both the attacker and the responder and show that
our BPV-JFK protocol satisfies the tolerance relation and hence resistant to the
attack.

Here the n coordinated initiators/attackers can compute the ephemeral DH
values as gx, g2x, g3x, . . . gnx and can engage in protocol runs with the responder
that uses the BPV generator to generate a new gy for each session. Since gy is
unique for each session, the n shared secrets are independent of each other. That
is for n different gyi , i = 1, . . . , n, the attacker has to perform n exponentiations
to compute the n shared secrets gxy1 , . . . , gnxyn . As a result, the cost for com-
puting genexp in message 1 could be amortised across all attackers but not for
the computation of genDH in message 3.

For large values of n, φ(shareexp), the attacker’s cost for sharing genexp,
is cheap. Hence the attack cost function Θ for the attacker in constructing n
valid-looking third messages is dominated by events of expensive cost since the
attacker must compute new shared secret for each session. Hence the attacker’s
total cost is Θ(decrypt1) = expensive. However, to process a single message
δ′(versig2), the operations performed by the responder are dominated by events
of two expensive costs. Hence, δ′(versig2) = expensive. Therefore, we see that
(δ′(versig2), Θ(decrypt1)) = (expensive, expensive) which belongs to T and hence
the protocol is resistant to the DoS attack.

3.6 Analysing the BPV-JFK Protocol in the Stebila et al. model

Stebila et al. [23] gave a generic technique to transform any protocol into a
DoS resistant protocol. Their technique uses strongly difficult interactive client
puzzles as a DoS countermeasure and message authentication codes (MAC) for
integrity of stateless connections. The server in the protocol must not perform
any expensive operation until it verifies the MAC and the puzzle solution. Refer
to [23] for a detailed description of the model.

In this section we follow the approach of Stebila et al. to turn BPV-JFK into
a DoS-resistant protocol. We combine a strongly difficult interactive client puz-
zle with the BPV-JFK protocol and show that the resultant protocol, denoted
DoS-BPV-JFK in Figure 5, satisfies the definition of Stebila et al.

DoS-BPV-JFK Protocol Specification. Let us assume Puz —consisting of Setup,
GenPuz, FindSoln, and VerSoln algorithms — is a strongly difficult client puzzle
[23]. Let DoS-BPV-JFK be the protocol consisting of the following algorithms:

– GlobalSetup(1l): Set ρSpace ← {0, 1}` and NonceSpace← {0, 1}`.
– ServerSetup(Ŝ ∈ Servers): Set HKR←r {0, 1}` and ρŜ ← HKR
– CActionjDoS−BPV−JFK(· · ·),SActionjDoS−BPV−JFK(· · ·): As specified by the pro-

tocol in Figure 5.

Client Ĉ Server Ŝ
long-term secrets: ρŜ = HKR,
((xi, Xi))

N
i=1 ← BPVPre(g, n,N, q)

CAction1DoS−BPV−JFK:

1. NI ←r NonceSpace
2. compute N ′I
3. CAction1BPV−JFK

4. compute gx
gx, N ′I, ID

′
R−−−−−−−−−−−−→ SAction1DoS−BPV−JFK:

5. NR ←r NonceSpace

6. str ← (Ĉ, Ŝ, N ′I, NR)
7. puz ← GenPuz(Q, str)
8. SAction1BPV−JFK

9. (y, gy)← BPVGen(g, n, `, q, (xi, Xi))
N
i=1)

10. gy, puz, λ = MACHKR(gy, NR, N
′
I, IPI, str, puz)

11. CAction2DoS−BPV−JFK:
N ′I, NR, IDR, G, λ←−−−−−−−−−−−− store y

12. soln← FindSoln(str, puz)
13. CAction2BPV−JFK :

14. compute
15. SH = H(gxy, I,R), F NI, NR, g

x, gy, F,
puz, soln, str, λ−−−−−−−−−−−−→ SAction2DoS−BPV−JFK:

16. compute N ′I, reject if
17. λ 6= MACHKR(gy, NR, N

′
I, IPI, str, puz)

18. reject if ¬ VerSoln(str, puz, soln)
19. τ ← (NI, NR, puz, soln)

20. verify no existing presession [Ĉ, Ŝ, τ]

21. accept and store presession [Ĉ, Ŝ, τ]
22. SAction2BPV−JFK

23. generate SH = H(gxy, I,R),verify F

24. verify sig
NI, NR, g

x, gy, sa, sig←−−−−−−−−−−−− generate sig

Fig. 5. DoS-BPV-JFK protocol

Theorem 4. Let Puz be an ε`,Q,n(t)-strongly difficult interactive puzzle and
that MAC is a family of secure message authentication codes. Then DoS-BPV-
JFK is an ε′`,Q,n(t)-denial-of-service-resistant protocol, for ε′`,Q,n(t) = ε`,Q,n(t+
cq) + negl(`), where c is a constant and q is the number of Send queries issued,
assuming t ∈ poly(`).

Proof. Since Puz is an ε`,Q,n(t)-strongly difficult interactive puzzle and MAC
is a secure message authentication code, the proof for condition 1 of the DoS
definition of Stebila et al. in [23] directly follows from Theorem 3 in [23]. It
remains to show that SAction1BPV−JFK does not involve any expensive operation.
It is clear from Figure 5 that SAction1BPV−JFK involves only a small number of
modular additions and modular multiplications. ut

4 Conclusion and Future Work

Denial of service attacks are a growing concern to open networks. They may
arise in a number of ways; in this work we focused on resource exhaustion DoS
attacks (on network protocols) which cause a server to perform many expensive
operations. We identified such an attack on the JFK protocol. Though there
are many other security features offered by the JFK protocol, it achieves only
adaptive forward secrecy. To achieve perfect forward secrecy and to resist the
identified attack, we propose to use a technique introduced by Boyko et al. in
place of ephemeral key reuse and show that the new protocol is SK-secure in
CK01 model under the DDH assumption. The resultant protocol can easily be
shown to be DoS-resistant after incorporating client puzzles and secure MACs.
While there are many interesting features offered by the resultant protocol, it
would be interesting to see if the proposed techniques can be embedded in any
other DH based key exchange protocols.

Acknowledgements. The authors are grateful to Dr. Berkant Ustaoglu for his
critical comments and to anonymous referees for helpful comments. This work
is supported by Australia-India Strategic Research Fund project TA020002.

References

1. W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, A. D. Keromytis,
and O. Reingold. Just Fast Keying: Key agreement in a hostile Internet. ACM
Transactions on Information and System Security, 7(2):1–30, May 2004.

2. T. Aura and P. Nikander. Stateless connections. In Y. Han, T. Okamoto, and
S. Qing, eds., ICICS 1997, volume 1334 of LNCS, pages 87–97. Springer, 1997.

3. T. Aura, P. Nikander, and J. Leiwo. DOS-resistant authentication with client
puzzles. In B. Christianson, B. Crispo, J. A. Malcolm, and M. Roe, eds., Secu-
rity Protocols: 8th International Workshop, volume 2133 of LNCS, pages 170–177.
Springer, 2000.

4. M. Bellare and P. Rogaway. Entity authentication and key distribution. In D. R.
Stinson, ed., CRYPTO ’93, volume 773 of LNCS, pages 232–249. Springer, 1993.

5. V. Boyko, M. Peinado, and R. Venkatesan. Speeding up discrete log and factoring
based schemes via precomputations. In K. Nyberg, ed., EUROCRYPT ’98, volume
1403 of LNCS, pages 221–235. Springer, 1998.

6. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In B. Pfitzmann, ed., EUROCRYPT 2001, volume 2045
of LNCS, pages 453–474. Springer, 2001.

7. R. Canetti and H. Krawczyk. Security Analysis of IKE’s Signature-Based Key-
Exchange Protocol. In M. Yung, ed., CRYPTO 2002, volume 2442 of LNCS, pages
143–161. Springer, 2002.

8. C. Castelluccia, E. Mykletun, and G. Tsudik. Improving secure server performance
by re-balancing SSL/TLS handshakes. In F. Lin, D. Lee, B. Lin, S. Shieh, and
S. Jajodia, eds., ASIACCS 2006, pages 26–34. ACM, 2006.

9. L. Gong and P. Syverson, Fail-Stop Protocols: An Approach to Designing Secure
Protocols. In R.K. Iyer, M. Morganti, V. Glogor and W.K. Fuchs eds., Proc.

Dependable Computing for Critical Applications, pages 44–55. IEEE Computer
Society, 1998.

10. D. Harkins, D. Carrel, et al. The Internet Key Exchange (IKE), 1998. URL:
www.ietf.org/rfc/rfc2409.

11. A. Juels and J. Brainard. Client puzzles: A cryptographic countermeasure against
connection depletion attacks. In NDSS 1999, pages 151–165. Internet Society, 1999.

12. C. Kaufman. Internet Key Exchange (IKEv2) protocol, December 2005. RFC
4306.

13. K. Matsuura and H. Imai. Modification of Internet Key Exchange resistant against
Denial-of-Service. In Pre-Proceeding of Internet Workshop (IWS) 2000, pages 167–
174, Feb 2000.

14. C. Meadows. A formal framework and evaluation method for network denial of
service. In CSFW 1999, IEEE, 1999.

15. R. Moskowitz, P. Nikander, P. Jokela, and T. R. Henderson. Host Identity Protocol,
April 2008. RFC 5201.

16. P. Nguyen, I. Shparlinski, and J. Stern. Distribution of modular sums and the
security of the server aided exponentiation. In Proc. Workshop on Cryptography
and Computational Number Theory (CCNT’99), pages 257–268. Birkhäuser, 2001.

17. P. Q. Nguyen and J. Stern. The hardness of the hidden subset sum problem and
its cryptographic implications. In M. J. Wiener, ed., CRYPTO ’99, volume 1666
of LNCS, pages 31–46. Springer, 1999.

18. T. Okamoto and K. Tanaka and S. Uchiyama. Quantum Public-Key Cryptosys-
tems. In M. Bellare, ed., CRYPTO ’2000, volume of LNCS, pages 147-165.
Springer, 2000.

19. J. Rangasamy, D. Stebila, C. Boyd and J. González Nieto. An integrated ap-
proach to cryptographic mitigation of denial-of-service attacks. In R. Sandhu and
D.S. Wong eds., ASIACCS 2011, pages 114–123. ACM 2011.

20. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical Report TR-684, MIT Laboratory for Computer Science, March
1996.

21. J. Smith, J. González Nieto, and C. Boyd. Modelling denial of service attacks on
JFK with Meadows’s cost-based framework. In R. Buyya, T. Ma, R. Safavi-Naini,
C. Steketee, and W. Susilo, ads., AISW-NetSec 2006, volume 54 of CRPIT, pages
125–134. Australian Computer Society, 2006.

22. D. Stebila and B. Ustaoglu. Towards Denial-of-Service-Resilient Key Agreement
Protocols. In C. Boyd and J.G. Nieto eds., ACISP 2009, volume 5594 of LNCS,
pages 389–406. Springer, 2009.

23. D. Stebila, L. Kuppusamy, J. Rangasamy, C. Boyd, and J. González Nieto. Stronger
difficulty notions for client puzzles and denial-of-service-resistant protocols. In
A. Kiayias, ed., CT-RSA 2011, volume 6558 of LNCS, pages 284–301. Springer,
2011.

A Meadows’ Cost-Based Framework [14]

Meadows [14] developed a cost-based framework for analysing vulnerabilities of
DoS attacks in protocols. The model assigns cost to every action performed by
the communicating principals (initiator and responder) to compare the amount
of resources expended on both initiator and responder sides. In Meadows frame-
work, a protocol is resistant to DoS attacks if the cost for an attacker to suc-
cessfully interrupt the protocol at any stage exceeds the given threshold.

A.1 Notation

Meadows used the Alice-and-Bob specification style to specify the protocols for
the framework to calculate the cost associated with every action that includes
generating, verifying and accepting message. The following definitions appears
in [14] and [21].

Definition 4. An Alice-and-Bob specification is a sequence of statements of the
form A→ B : M where M represents the message is sent from A to B.

The method of annotating an Alice-and-Bob specification to include message
processing steps needed at both the communicating parties is described below.

Definition 5. An annotated Alice-and-Bob specification is a sequence of state-
ments of the form
A → B : T1, ..., Tk||M ||O1, ..., On. The operations performed by A to produce
message M is represented by the ordered sequence Ti. Similarly, the ordered
sequence Oj represents the operations performed by B to process and validate
message M.

Normally the events correspond to a sequence of generating, sending, receiv-
ing, validating and accepting a message. The different types of events are: (1)
normal, (2) verification, and (3) accept.

A.2 Cost Sets and Cost Functions

The following definitions are used to compute the costs for participating in a
protocol. Usually this is done by calculating the costs of individual events and
summing them for each of the steps in a protocol.

Definition 6. A cost set C is a monoid with the monoid operation + and partial
order < such that x ≤ x+ y and y ≤ x+ y for all x, y in C

Definition 7. Assume that the events are defined in an Alice-and-Bob specifi-
cation. A function δ that maps events to a cost set C and maps events to 0 on
accept events is called an event cost function.

Definition 8. Let P be an annotated Alice-and-Bob specification protocol. The
message processing cost function δ

′
associated with the event cost function δ on

verification events following receipt of a message is as follows: If a line A→ B :
T1, ..., Tk||M ||V1, ..., Vn appears in P an annotated Alice-and-Bob specification of
a protocol, then for each verification event Vj : δ

′
(V j) = δ(V1) + ...+ δ(Vj).

We now define the costs to a responder for engaging in the protocol.

Definition 9. Let P be an annotated Alice-and-Bob specification protocol. The
protocol engagement cost function ∆ associated with δ defined on accept events
is as follows: If the line A→ B : T1, ..., Tk||M ||V1, ..., Vn appears in P, and Vn is
an accept event, then the protocol engagement cost ∆(Vn) is defined as the sum
of the costs of all events occurring at B up to the accept event Vn plus cost of
the event Ti.

A DoS attacker has the capability to send bogus messages or to engage in
bogus protocol runs by spoofing the IP address and hence the attacker is not
restricted to the same events as a legitimate protocol participant. Therefore, it
is necessary to define an independent set of cost functions to define the cost for
actions performed by the attacker.

Definition 10. Let us denote the attacker cost set by G and the set of actions
performed by the attacker by I. Let φ be the function that maps the attacker’s
actions to their cost set G. Then the cost function denoted by Φ is defined on a
sequence of actions performed by the attacker as, Φ(i1, ..., in) = φ(i1)+ ...+φ(in)
for ik ∈ I

Definition 11. Let Θ be the attacker cost function that maps events in P to
a cost set C. The protocol P is said to be fail stop if for any event E ∈ P, if
the attacker interferes with a message arriving before E, then the events arriving
after E will not occur unless the cost expended by the attacker is Θ(E)

Definition 12. Let us denote the responder and attacker cost sets by C and G
respectively. A tolerance relation T is the subset of C × G consisting of all pairs
(c, g) such that if the cost expended by the attacker is greater than g, then the
protocol designer will tolerate the cost expended by the responder up to c. A tuple
(c0, g0) is said to be within T if there exists (c, g) ∈ T with c0 ≤ c and c0 ≤ c.

A.3 Evaluating DoS Resistance

The procedure for assessing DoS resistance in a protocol using this framework
is as follows [14]:

– determine the attacker’s capabilities and the attack cost function Θ for each
step of the protocol execution,

– decide on the tolerance relation T , and
– verify that (δ

′
(E2), Θ(E1)) ∈ T for a verification event E2 immediately fol-

lowed by the event E1, and that (∆(E), Θ(E)) ∈ T if E is an accept event.

To analyse JFK using Meadows’ cost based framework, we follow the defini-
tion of cost sets and tolerance relation proposed by Smith et al. [21]: the cost sets
for both the responder and the attacker, denoted respectively by C and G, con-
sist of elements cheap,medium and expensive such that 0 < cheap < medium <
expensive. Adding two elements in the cost set results in assigning the maximum
of two: x+ y = max(x, y). The tolerance relation T is defined as ([14], [21]):

T =

(cheap, cheap); (cheap,medium);

(medium, cheap); (cheap, expensive)
(medium,medium); (medium, expensive);

(expensive, expensive);

A protocol may become vulnerable to a cheaply mounted DoS attack if the pair
(expensive, cheap) and (expensive,medium) ever occurs in the analysis.

