
An End-to-End Systems Approach to Elliptic

Curve Cryptography

Nils Gura, Sheueling Chang Shantz, Hans Eberle, Sumit Gupta, Vipul Gupta,
Daniel Finchelstein, Edouard Goupy, Douglas Stebila

Sun Microsystems Laboratories
{Nils.Gura, Sheueling.Chang, Hans.Eberle, Gupta.Sumit, Vipul.Gupta,

Daniel.F.Finchelstein, Edouard.Goupy, Douglas.Stebila}@sun.com
http://www.research.sun.com

Abstract. Since its proposal by Victor Miller [17] and Neal Koblitz [15]
in the mid 1980s, Elliptic Curve Cryptography (ECC) has evolved into a
mature public-key cryptosystem. Offering the smallest key size and the
highest strength per bit, its computational efficiency can benefit both
client devices and server machines. We have designed a programmable
hardware accelerator to speed up point multiplication for elliptic curves
over binary polynomial fields GF (2m). The accelerator is based on a
scalable architecture capable of handling curves of arbitrary field de-
grees up to m = 255. In addition, it delivers optimized performance for
a set of commonly used curves through hard-wired reduction logic. A
prototype implementation running in a Xilinx XCV2000E FPGA at 66.4
MHz shows a performance of 6987 point multiplications per second for
GF (2163). We have integrated ECC into OpenSSL, today’s dominant
implementation of the secure Internet protocol SSL, and tested it with
the Apache web server and open-source web browsers.

1 Introduction

Since its proposal by Victor Miller [17] and Neal Koblitz [15] in the mid 1980s,
Elliptic Curve Cryptography (ECC) has evolved into a mature public-key cryp-
tosystem. Extensive research has been done on the underlying math, its security
strength, and efficient implementations.

ECC offers the smallest key size and the highest strength per bit of any known
public-key cryptosystem. This stems from the discrete logarithm problem in the
group of points over an elliptic curve. Among the different fields that can un-
derlie elliptic curves, integer fields F (p) and binary polynomial fields GF (2m)
have shown to be best suited for cryptographical applications. In particular, bi-
nary polynomial fields allow for fast computation in both software and hardware
implementations.

Small key sizes and computational efficiency of both public- and private-key
operations make ECC not only applicable to hosts executing secure protocols
over wired networks, but also to small wireless devices such as cell phones, PDAs
and SmartCards. To make ECC commercially viable, its integration into secure

protocols needs to be standardized. As an emerging alternative to RSA, the US
government has adopted ECC for the Elliptic Curve Digital Signature Algorithm
(ECDSA) and specified named curves for key sizes of 163, 233, 283, 409 and
571 bit [18]. Additional curves for commercial use were recommended by the
Standards for Efficient Cryptography Group (SECG) [7]. However, only few
ECC-enabled protocols have been deployed in commercial applications to date.
Today’s dominant secure Internet protocols such as SSL and IPsec rely on RSA
and the Diffie-Hellman key exchange. Although standards for the integration of
ECC have been proposed [4], they have not yet been finalized.

Our approach towards an end-to-end solution is driven by a scenario of a
wireless and web-based environment where millions of client devices connect to
a secure web server.

The aggregation of client-initiated connections/transactions leads to high
computational demand on the server side, which is best handled by a hardware
solution. While support for a limited number of curves is acceptable for client
devices, server-side hardware needs to be able to operate on numerous curves.
The reason is that clients may choose different key sizes and curves depending on
vendor preferences, individual security requirements and processor capabilities.
In addition, different types of transactions may require different security levels
and thus, different key sizes.

We have developed a cryptographic hardware accelerator for elliptic curves
over arbitrary binary polynomial fields GF (2m), m ≤ 255. To support secure
web transactions, we have fully integrated ECC into OpenSSL and tested it
with the Apache web server and open source web browsers.

The paper is structured as follows: Section 2 summarizes related work and
implementations of ECC. In Section 3, we outline the components of an ECC-
enabled secure system. Section 4 describes the integration of ECC into OpenSSL.
The architecture of the hardware accelerator and the implemented algorithms are
presented in Section 5. We give implementation cost and performance numbers
in Section 6. The conclusions and future directions are contained in Section 7.

2 Related Work

Hardware implementations of ECC have been reported in [20], [2], [1], [11],
[10] and [9]. Orlando and Paar describe a programmable elliptic curve proces-
sor for reconfigurable logic in [20]. The prototype performs point multiplica-
tion based on Montgomery Scalar Multiplication in projective space [16] for
GF (2167). Their design uses polynomial basis coordinate representation. Multi-
plication is performed by a digit-serial multiplier proposed by Song and Parhi
[22]. Field inversion is computed through Fermat’s theorem as suggested by
Itoh and Tsujii [13]. With a performance of 0.21 ms per point multiplication
this is the fastest reported hardware implementation of ECC. Bednara et al. [2]
designed an FPGA-based ECC processor architecture that allows for using mul-
tiple squarers, adders and multipliers in the data path. They researched hybrid
coordinate representions in affine, projective, Jacobian and López-Dahab form.

Two prototypes were synthesized for GF (2191) using an LFSR polynomial ba-
sis multiplier and a Massey-Omura normal basis multiplier, respectively. Agnew
et al. [1] built an ECC ASIC for GF (2155). The chip uses an optimal normal
basis multiplier exploiting the composite field property of GF (2155). Goodman
and Chandrakasan [11] designed a generic public-key processor optimized for
low power consumption that executes modular operations on different integer
and binary polynomial fields. To our knowledge, this is the only implementation
that supports GF (2m) for variable field degrees m. However, the architecture
is based on bit-serial processing and its performance cannot be scaled to levels
required by server-type applications.

3 System Overview

Figure 1 shows the implementation of a client/server system using a secure ECC-
enhanced protocol. We integrated new cipher suites based on ECC into OpenSSL
[19], the most widely used open-source implementation of the Secure Sockets
Layer (SSL). More specifically, we added the Elliptic Curve Digital Signature
Algorithm (ECDSA), the Elliptic Curve Diffie-Hellman key exchange (ECDH),
and means to generate and process X.509 certificates containing ECC keys.

ECC HW Accelerator

SolarisTM Driver

OpenSSL

Apache Web Server

PCI bus

OpenSSL

Dillo Web Browser

Server Client

Fig. 1. Secure Client/Server System.

We validated our implementation by
integrating it with the Apache web
server and open-source web browsers
Dillo and Lynx running on a hand-
held client device under Linux. To ac-
celerate public-key operations on the
server side, we designed and built a
hardware accelerator connected to the
host machine through a PCI interface.
The accelerator is accessed by a char-
acter device driver running under the
Solaris

�

Operating Environment.

4 Secure Sockets Layer

Secure Sockets Layer (SSL aka TLS) [8] is the most widely deployed and used
security protocol on the Internet today. The protocol has withstood years of
scrutiny by the security community and, in the form of HTTPS1, is now trusted
to secure virtually all sensitive web-based applications ranging from banking to
online trading to e-commerce.

SSL offers encryption, source authentication and integrity protection for data
exchanged over insecure, public networks. It operates above a reliable transport
service such as TCP and has the flexibility to accommodate different crypto-
graphic algorithms for key agreement, encryption and hashing. However, the

1 HTTPS is HTTP over an SSL-secured connection.

specification does recommend particular combinations of these algorithms, called
cipher suites , which have well-understood security properties.

Application Data Application Data

Finished

[ChangeCipherSpec]

[ChangeCipherSpec]

Finished

ServerClient

ClientHello (Includes proposed cipher suites)

ServerKeyExchange*
CertificateRequest*

ServerHello
Certificate*

(Specifies selected cipher suite)

} (Conveys server’s authenticated
public key)

(Rarely used, has acceptable
types, CAs)

ServerHelloDone

ClientKeyExchange (Has client’s ephemeral public key
(Has client’s long-term public key)Certificate*

or RSA-encrypted premaster)
(Proves possession of long-termCertificateVerify*
private key, if needed)

Fig. 2. SSL Handshake for an RSA-based Cipher Suite.

The two main components of SSL are the Handshake protocol and the Record
Layer protocol. The Handshake protocol allows an SSL client and server to ne-
gotiate a common cipher suite, authenticate each other2, and establish a shared
master secret using public-key algorithms. The Record Layer derives symmet-
ric keys from the master secret and uses them with faster symmetric-key algo-
rithms for bulk encryption and authentication of application data. Public-key
cryptographic operations are the most computationally expensive portion of SSL
processing, and speeding them up remains an active area for research and devel-
opment.

4.1 Public-key Cryptography in SSL

Figure 2 shows the general structure of a full SSL handshake. Today, the most
commonly used public-key cryptosystem for master-key establishment is RSA
but the IETF is considering an equivalent mechanism based on ECC [4].

RSA-based Handshake The client and server exchange random nonces (used
for replay protection) and negotiate a cipher suite with ClientHello and Server-
Hello messages. The server then sends its signed RSA public-key either in the
Certificate message or the ServerKeyExchange message. The client verifies the
RSA signature, generates a 48-byte random number (the pre-master secret) and
sends it encrypted with the server’s public-key in the ClientKeyExchange. The

2 Client authentication is optional. Only the server is typically authenticated at the
SSL layer and client authentication is achieved at the application layer, e.g. through
the use of passwords sent over an SSL-protected channel. However, some deployment
scenarios do require stronger client authentication through certificates.

server uses its RSA private key to decrypt the pre-master secret. Both end-
points then use the pre-master secret to create a master secret, which, along
with previously exchanged nonces, is used to derive the cipher keys, initializa-
tion vectors and MAC (Message Authentication Code) keys for bulk encryption
by the Record Layer.

The server can optionally request client authentication by sending a Certifi-
cateRequest message listing acceptable certificate types and certificate author-
ities. In response, the client sends its private key in the Certificate and proves
possession of the corresponding private key by including a digital signature in
the CertificateVerify message.

ECC-based Handshake The processing of the first two messages is the same as
for RSA but the Certificate message contains the server’s Elliptic Curve Diffie-
Hellman (ECDH) public key signed with the Elliptic Curve Digital Signature
Algorithm (ECDSA). After validating the ECDSA signature, the client conveys
its ECDH public key in the ClientKeyExchange message. Next, each entity uses
its own ECDH private key and the other’s public key to perform an ECDH op-
eration and arrive at a shared pre-master secret. The derivation of the master
secret and symmetric keys is unchanged compared to RSA. Client authentica-
tion is still optional and the actual message exchange depends on the type of
certificate a client possesses.

5 ECC Hardware Acceleration

Point multiplication on elliptic curves is the fundamental and most expensive
operation underlying both ECDH and ECDSA. For a point P in the group
({(x, y)| y2 + xy = x3 + ax2 + b; x, y ∈ GF (2m)} ∪ 0, +P) defined by a non-
supersingular elliptic curve with parameters a, b ∈ GF (2m) and for a positive
integer k, the point multiplication kP is defined by adding P k-1 times to itself
using +P

3. Computing kP is based on a sequence of modular additions, mul-
tiplications and divisions. To efficiently support ECC, these operations need to
be implemented for large operands.

The design of our hardware accelerator was driven by the need to both pro-
vide high performance for named elliptic curves and support point multiplica-
tions for arbitrary, less frequently used curves. It is based on an architecture for
binary polynomial fields GF (2m), m ≤ 255. We believe that this maximal field
degree offers adequate security strength for commercial web traffic for the fore-
seeable future. We chose to represent elements of GF (2m) in polynomial basis,
i.e. polynomials a = am−1t

m−1 + am−2t
m−2 + · · · + a1t + a0 are represented as

bit strings (am−1am−2 . . . a1a0).

3 For a detailed mathematical background on ECC the reader is referred to [3].

5.1 Architectural Overview

We developed a programmable processor optimized to execute ECC point mul-
tiplication. The data path shown in Figure 3 implements a 256-bit architecture.
Parameters and variables are stored in an 8kB data memory DMEM and program
instructions are contained in a 1kB instruction memory IMEM. Both memories
are dual-ported and accessible by the host machine through a 64-bit/66MHz
PCI interface. The register file contains eight general purpose registers R0-R7,
a register RM to hold the irreducible polynomial and a register RC for curve-
specific configuration information.
The arithmetic units implement division (DIV), multiplication (MUL) and

DIV MUL ALU
Reg.file
(R0..R7,
RM,RC)

DMEM

SBUSPCI
256

256DBUS

Control UnitIMEM

Fig. 3. Data Path and Control Unit.

fetch load RS0 load RS1 execute store RD0 store RD1execute execute execute

fetch load RS0 load RS1 execute store RD

fetch load RS0

I
0

I
1

I
2

Fig. 4. Parallel Instruction Execution.

squaring/addition/shift left (ALU). Source operands are transferred over the
source bus SBUS and results are written back into the register file over the
destination bus DBUS.

Program execution is orchestrated by the Control Unit, which fetches in-
structions from the IMEM and controls the DMEM, the register file and the
arithmetic units. As shown in Table 1, the instruction set is composed of mem-
ory instructions, arithmetic/logic instructions and control instructions. Memory
instructions LD and ST transfer operands between the DMEM and the register
file. The arithmetic and logic instructions include MUL, MULNR, DIV, ADD,
SQR and SL. We implemented a load/store architecture. That is, arithmetic and
logic instructions can only access operands in the register file. The execution of
arithmetic instructions can take multiple cycles and, in case of division and mul-
tiplication, the execution time may even be data-dependent. To control the flow
of the program execution, conditional branches BMZ and BEQ, unconditional
branch JMP and program termination END can be used.

The data path allows instructions to be executed in parallel or overlapped.
The Control Unit examines subsequent instructions and decides on the execution
model based on the type of instruction and data dependencies. An example for
parallel and overlapped execution of an instruction sequence I0; I1; I2 is given
in Figure 4. Parallel execution of I0; I1 is possible if I0 is a MUL or MULNR
instruction and I1 is an ADD or SQR instruction and no data dependencies
exist between the destination register/s of I0 and the source and destination
register/s of I1. Execution of I1 and I2 can be overlapped if source register RS0

Instruction Type / Name Semantics Registers Cycles
Opcode

Memory Instr.
LD DMEM,RD Load DMEM → RD RD={R0..R7,RM,RC} 3
ST RS,DMEM Store RS → DMEM RS={R0..R7} 3
Arithmetic Instr.
DIV RS0,RS1,RD Divide (RS1/RS0) mod M → RD RS0,RS1,RD={R0..R7} ≤ 2m + 4
MUL RS0,RS1,RD Multiply (RS0*RS1) mod M → RD RS0,RS1,RD={R0..R7} 8 (7)
MULNR RS0,RS1,RD Multiply w/o RS0*RS1 → RD0,RD1 RS0,RS1,RD0,RD1= 8

Reduction {R0..R7}
ADD RS0,RS1,RD Add RS0+RS1 → RD RS0,RS1,RD={R0..R7} 3

(RD==0) → EQ
SQR RS,RD Square (RS*RS) mod M → RD RS,RD={R0..R7} 3

(RD==0) → EQ
SL RS,RD Shift Left {RS[254..0],0} → RD RS,RD={R0..R7} 3

RS[255] → MZ
(RD==0) → EQ

Control Instr.
BMZ ADDR Branch branch if MZ == 0 2
BEQ ADDR Branch branch if EQ == 1 4
JMP ADDR Jump jump 2
END End end program execution

Table 1. Instruction Set.

of I2 is different from destination register RD1 of I0, i.e. RS0 can be read over
the SBUS while RD1 is written over the DBUS.

5.2 ALU

The ALU incorporates two arithmetic and one logic operation: Addition, squar-
ing and shift left. The addition of two elements a, b ∈ GF (2m) is defined as the
sum of the two polynomials obtained by adding the coefficients mod 2. This can
be efficiently computed as the bitwise XOR of the corresponding bit strings.

Squaring is a special case of multiplication and is defined in two steps. First,
the operand a ∈ GF (2m) is multiplied by itself resulting in a polynomial c0 = a2

of degree less than 2m − 1, i.e. deg(c0) < 2m − 1. c0 may not be an element
of the underlying field since its degree may be greater than m − 1. Second,
c0 is reduced to a congruent polynomial c ≡ c0 mod M , whereby c ∈ GF (2m)
is defined as the residue of the polynomial divison of c0 and the irreducible
polynomial M . Squaring a does not require a full multiplication since all mixed
terms aiajt

k, k = 1..2(m− 1), k = i + j, i 6= j occur twice cancelling each other
out. Therefore, a2 = am−1t

2(m−1) + am−2t
2(m−2) + · · ·+ a1t

2 + a0 can be easily
computed by inserting zeros into the corresponding bit string. For example,
squaring (t3 + t2 + t + 1) results in (1111)2 = 1010101.

Reduction is based on the congruency

u ≡ u + vM mod M (1)

for an irreducible polynomial M and arbitrary polynomials u and v. Since the
degree of c0 is less than 2m−1, c0 can be split up into two polynomials c0,h and
c0,l with deg(c0,h) < m− 1, deg(c0,l) < m such that

c0 = a2 = c0,h ∗ tm + c0,l (2)

Using tm ≡ M − tm mod M as a special case of (1), the congruency c1 = c0,h ∗
(M − tm) + c0,l ≡ c0 mod M is obvious. Given that deg(c0,h) < m − 1 and
deg(M − tm) < m, it follows that deg(c1) < 2m− 2. By iteratively splitting up
cj into polynomials cj,h and cj,l such that

cj+1 = cj,h ∗ (M − tm) + cj,l until cj,h = 0 ⇔ cj ∈ GF (2m) (3)

the reduced result c = ci can be computed in a maximum of i ≤ m−1 reduction
iterations. The minimum number of iterations depends on the second highest
term in the irreducible polynomial M [22], [12]. For

M = tm + tk +

k−1
∑

j=1

Mjt
j + 1, 1 ≤ k < m (4)

it follows that a better upper bound for deg(c1) is deg(c1) < m+k−1. Applying
(3), deg(cj) gradually decreases such that

deg(cj+1,h) =

{

deg(cj,h) + k −m if deg(cj,h) > m− k

0 if deg(cj,h) ≤ m− k

The minimum number of iterations i is given by

m − 1− i(m− k) ≤ 0 ⇔ i > d
m− 1

m− k
e (5)

To enable efficient implementations, M is often chosen to be either a trinomial
Mt or pentanomial Mp:

Mt = tm + tk3 + 1, Mp = tm + tk3 + tk2 + tk1 + 1, m > k3 > k2 > k1 > 1

Choosing M such that k3 ≤ m−1
2 apparently limits the number of reduction

iterations to 2, which is the case for all irreducible polynomials recommended
by NIST [18] and SECG [7]. The multiplications cj,h ∗ (M − tm) can be op-
timized if (M − tm) is a constant sparse polynomial.

RA

1

n
SBUS

SQR
+

red163 red193 red233

[n-1..0]

DBUS

=0
1 n

2n-1

n

EQMZ

<<

Fig. 5. ALU.

In this case, the two steps of a squar-
ing operation can be hard-wired and
executed in a single clock cycle. As
shown in Figure 5, the ALU imple-
ments hard-wired reduction for the ir-
reducible polynomials t163 + t7 + t6 +
t3 + 1, t193 + t15 + 1 and t233 + t74 + 1,
respectively. Moreover, the ALU can
compute addition (XOR) and execute
a shift left. It further computes the
flags EQ and MZ used by the branch
instructions BEQ and BMZ as speci-
fied in Table 1.

5.3 Multiplier

We studied and implemented several different architectures and, finally, settled
on a digit-serial shift-and-add multiplier. Figure 6 gives a block diagram of the
multiplier.
The result is computed in two steps. First, the product is computed by iteratively

×

×

+

X Y

Z’

Z

d

d

red163
red193
red233

nd

n+d

2n

2n

m (reduced)
2n (non-reduced)

n+d

2n-d

[2n-1..d] [2n-1..0]

en

SBUS

n

SBUS

n

n

DBUS

Fig. 6. Shift-and-Add Multiplier.

×

+

X Y

Z’

d

nd

n+d

n+d

d
n+d

red163
red193
red233

SBUS SBUS

mn n

n+d

Z
n

n

red163
red193
red233

en

DBUS

Fig. 7. Least-Significant-Digit-First Multiplier.

multiplying a digit of operand X with Y , and accumulating the partial products
in Z ′. Next, the product Z ′ is reduced by the irreducible polynomial. In our
implementation, the input operands X and Y can have a size of up to n = 256
bits, and the reduced result Z has a size of m = 163, 193, 233 bits according
to the specified named curve. The digit size d is 64. We optimized the number
of iterations needed to compute the product Z ′ such that the four iterations it
takes to perform a full 256-bit multiplication are only executed for m = 193, 233
whereas three iterations are executed for m = 163. To compensate for the missing
shift operation in the latter case, a multiplexer was added to select the bits of
Z ′ to be reduced. The reduction is hard-wired and takes another clock cycle.

The alternative designs we studied were based on the Karatsuba algorithm
[14] and the LSD multiplier [22]. Applying the Karatsuba algorithm to Figure 6,
we first split the 64-bit by 256-bit multiplication X [63..0]∗Y [255..0] into four 64-
bit by 64-bit multiplications X [63..0] ∗ Y [63..0], X [63..0] ∗ Y [127..64], X [63..0] ∗
Y [191..128], X [63..0] ∗ Y [255..192] and then use the Karatsuba algorithm to
calculate the four partial products. Compared with the shift-and-add algorithm
the Karatsuba algorithm is attractive since it lowers the bit complexity from
O(n2) to O(nlg3) [6]. It does, however, introduce irregularities into the wiring
and, as a result, additional wire delays. As we will show in Table 3, this design
did not meet our timing goal.

We also implemented the LSD multiplier shown in Figure 7. When compared
with the shift-and-add multiplier of Figure 6 the LSD multiplier is attractive
since it reduces the size of the register used for accumulating the partial results
from 2n bits to n+d bits. This is accomplished by shifting the Y operand rather
than the product Z ′ and reducing Y every time it is shifted. The implementation
cost is an additional reduction circuit. Since the two reduction operations of Y

and Z ′ do not take place in the same clock cycle, it is possible to share one
reduction circuit. However, considering the additional placement and routing
constraints imposed by a shared circuit, two separate circuits are, nevertheless,
preferred. An analysis of our FPGA implementation shows no advantage in terms
of size or performance. The size of the multiplier is dominated by the amount
of combinational logic resources and, more specifically, the number of look-up
tables (LUTs) needed. Thus, there is no advantage in reducing the size of the
register holding Z ′. Note, that as the digit size d is reduced, the ratio of registers
and LUTs changes; given the fixed ratio of registers and LUTs available on an
FPGA device, the LSD multiplier, therefore, can be attractive for small digit
sizes.

As it is our goal to process arbitrary curve types, we can rely on the hard-
wired reducers only for the named curves. All other curve types need to be
handled in a more general way, for example, with the algorithm presented in
Section 5.5. We, therefore, need a multiplier architecture that either provides
a way to reduce by an arbitrary irreducible polynomial or offers the option to
calculate a non-reduced product. We opted for the latter option and added a
path to bypass the reducer in Figure 6. Note that with the LSD multiplier a
non-reduced product can not be offered thus requiring full multipliers to replace
the reduction circuits.

5.4 Divider

The hardware accelerator implements dedicated circuitry for modular division
based on an algorithm described by Shantz [21]. A block diagram of the divider
is shown in Figure 8. It consists of four 256-bit registers A, B, U and V and a
fifth register holding the irreducible polynomial M . It can compute division for
arbitrary irreducible polynomials M and field degrees up to m = 255.

Initially, A is loaded with the divisor X , B with the irreducible polynomial
M , U with the dividend Y , and V with 0. Throughout the division, the following
invariants are maintained:

A ∗ Y ≡ U ∗X mod M (6) B ∗ Y ≡ V ∗X mod M (7)

Through repeated additions and divisions by t, A and B are gradually reduced
to 1 such that U (respectively V) contains the quotient Y

X
mod M . A polynomial

is divisible by t if it is even, i.e. the least significant bit of the corresponding bit
string is 0. Division by t can be efficiently implemented as a shift right operation.
In contrast to the original algorithm, which included magnitude comparisons of
registers A and B, we use two counters CA and CB to test for termination of

the algorithm. CB is initialized with the field degree m and CA with m−1. The
division algorithm consists of the following operations:

1. Division by t

(a) If even(A) and even(U): A := A
t
, CA := CA − 1

(b) If even(B) and even(V): B := B
t
, CB := CB − 1

2. Congruent addition of M
(a) If odd(U): U := U + M

(b) If odd(V): V := V + M
3. Addition of A and B

(a) If odd(A) and odd(B) and CA > CB: A := A + B, U := U + V

(b) If odd(A) and odd(B) and CA ≤ CB: B := A + B, V := U + V

The preconditions ensure that for any configuration of A, B, U and V at least
one of the operations can be executed. It is interesting to note that operations,
whose preconditions are satisfied, can be executed in any order without violat-
ing invariants (6) and (7). The control logic of the divider chooses operations
as preconditions permit starting with 1a and 2a. To ensure termination, 3a is
executed if CA > CB and 3b is executed if CA ≤ CB. CA and CB represent
the upper bound for the order of A and B. This is due to the fact that the order
of A + B is never greater than the order of A if CA > CB and never greater
than the order of B if CA ≤ CB. Postconditions of 2a, 2b, 3a and 3b guarantee
that either 1a or 1b can be executed to further decrease the order of A and B

towards 1.

SBUS

DBUS

V

0

U

0

B

+

A

M / t
+

M+

CA

-1m-1

CB

-1m

>

n n nn

log
2
n log

2
n

/ t

Fig. 8. Divider.

The division circuit shown in Fig-
ure 8 was designed to execute se-
quences of operations per clock cycle,
e.g. 3a,2a and 1a could be executed
in the same cycle. In particular, it is
possible to always execute either 1a or
1b once per clock cycle. Therefore, a
modular division can be computed in
a maximum of 2m clock cycles.

5.5 Point Multiplication Algorithms

We experimented with different point multiplication algorithms and settled on
Montgomery Scalar Multiplication using projective coordinates as proposed by
López and Dahab [16]. This choice is motivated by the fact that, for our im-
plementation, multiplications can be executed much faster than divisions. Ex-
pensive divisions are avoided by representing affine point coordinates (x, y) as
projective triples (X, Y, Z) with x = X

Z
and y = Y

Z
. In addition, this algorithm is

attractive since it provides protection against timing and power analysis attacks
as each point doubling is paired with a point addition such that the sequence of
instructions is independent of the bits in k.

A point multiplication kP can be computed with blog2(k)c point additions
and doublings. Throughout the computation, only the X- and Z-coordinates

of two points P1,i and P2,i are stored. Montgomery’s algorithm exploits the
fact that for a fixed point P = (X, Y, 1) and points P1 = (X1, Y1, Z1) and
P2 = (X2, Y2, Z2) the sum P1 + P2 can be expressed through only the X- and
Z-coordinates of P, P1 and P2 if P2 = P1 + P . P1 and P2 are initialized with
P1,blog2(k)c = P and P2,blog2(k)c = 2P . To compute kP , the bits of k are exam-
ined from left (kblog2(k)c) to right (k0). For ki = 0, P1,i is set to 2P1,i+1 (8) and
P2,i is set to P1,i+1 + P2,i+1 (9).

X1,i = X4
1,i+1 + bZ4

1,i+1

Z1,i = Z2
1,i+1 ∗X2

1,i+1 (8)

Z2,i = (X1,i+1 ∗ Z2,i+1 + X2,i+1 ∗ Z1,i+1)
2

X2,i = XZ2,i + (X1,i+1Z2,i+1)(X2,i+1Z1,i+1) (9)

Similarly, for ki = 1, P1,i is set to P1,i+1 + P2,i+1 and P2,i is set to 2P2,i+1. The
Y-coordinate of kP can be retrieved from its X- and Z-coordinates using the
curve equation. In projective coordinates, Montgomery Scalar Multiplication re-
quires 6blog2(k)c + 9 multiplications, 5blog2(k)c + 3 squarings, 3blog2(k)c + 7
additions and 1 division.

Named Curves An implementation of Equations (8) and (9) for named curves
over GF (2163), GF (2193) and GF (2233) is shown in Table 2. The computation

// register R0, R1, R2, R3 Code Execution
// value X1, Z1, X2, Z2

MUL(R1, R2, R2) R2 = Z1 ∗ X2 MUL(R1, R2, R2); SQR(R1, R1)

SQR(R1, R1) R1 = Z2

1

MUL(R0, R3, R4) R4 = X1 ∗ Z2 MUL(R0, R3, R4); SQR(R0, R0)

SQR(R0, R0) R0 = X2

1

ADD(R2, R4, R3) R3 = Z1 ∗ X2 + X1 ∗ Z2 ADD(R2, R4, R3)
MUL(R2, R4, R2) R2 = Z1 ∗ X2 ∗ X1 ∗ Z2 MUL(R2, R4, R2); SQR(R1, R4)

SQR(R1, R4) R4 = Z4

1

MUL(R0, R1, R1) R1 = Z2

1
∗ X2

1
MUL(R0, R1, R1); SQR(R3, R3)

SQR(R3, R3) R3 = Z3 = (Z1 ∗ X2 + X1 ∗ Z2)2

LD(data mem b, R5) R5 = b LD(data mem b, R5)

MUL(R4, R5, R4) R4 = b ∗ Z4

1
MUL(R4, R5, R4); SQR(R0, R0)

SQR(R0, R0) R0 = X4

1

LD(data mem Px, R5) R5 = X LD(data mem Px, R5)

MUL(R3, R5, R5) R4 = X ∗ (Z1 ∗ X2 + X1 ∗ Z2)2 MUL(R3, R5, R5); ADD(R4, R0, R0)

ADD(R4, R0, R0) R0 = X4

1
+ b ∗ Z4

1

ADD(R2, R5, R2) R2 = X ∗ Z3 + (Z1 ∗ X2) ∗ (X1 ∗ Z2) ADD(R2, R5, R2)

Table 2. Implementation and Execution of Projective Point Doubling and Addition.

of the two equations is interleaved such that there are no data dependencies
for any MUL/SQR or MUL/ADD instruction sequences. Hence, all MUL/SQR
and MUL/ADD sequences can be executed in parallel. Furthermore, there are
no data dependencies between subsequent arithmetic instructions allowing for
overlapped execution.

Generic Curves Squaring and multiplication require reduction, which can ei-
ther be hard-wired or implemented for arbitrary field degrees through an instruc-
tion sequence of polynomial multiplications (MULNR) and additions (ADD) as

shown in Section 5.2. Figure 9 shows a multiplication including reduction. Note

0....................0 a
0n2n

r
h

r := a * tn-m

0 c
0,l

0n-mn2n

r := r
l
* b = c

0
* tn-m

j := 0

r
l

0 c
j,l

0n-mn2n

while(r
h
<>0)

 r := r
h
*(M-tm)*tn-m+r

l

 j := j + 1

0

0

c
j,h

0 c
j,l

0n2n n+m
0...................0r := r

l
* tm

0

c
0,h

n+m-1

n+m-1-j(m-k)

n-m

Fig. 9. Non-Hard-Wired Reduction through Multiplication and Addition.

that the multiplier includes registers rl and rh, which have a width n = 256 not
equal to the field degree m. Therefore, the constant factor tn−m is used to align
multiplication results to the boundary between rl and rh. Computing cj+1,h and
cj+1,l from cj,h and cj,l based on Equation (3) requires one MULNR and one
ADD instruction. Hence, multiplication and squaring operations with reduction
for arbitrary field degrees can be computed with 3 + i MULNR and i ADD in-
structions with i as in Equation (5). Looking at the code sequence of a point
multiplication, optimization can be done by storing some multiplication results
multiplied by tn−m omitting the first and last step.

6 Implementation and Performance

We specified the hardware in Verilog and prototyped it in a Xilinx Virtex
XCV2000E-FG680-7 FPGA using the design tools Synplify 7.0.2 and Xilinx
Design Manager 3.3.08i. Area constraints were given for the ALU, the divider
and the register file, but no manual placement had to be done. The prototype
runs off the PCI clock at a frequency of 66.4 MHz.

Table 3 summarizes the cost and performance of the ALU, the divider and
three multiplier design alternatives. The cost is given as the number of used
4-input look-up tables (LUTs) and flip-flops (FFs). The multiplier clearly dom-
inates the design size with 73% of the LUTs and 46% of the FFs. However,
multiplication is the single most time-critical operation as shown in Table 4. For
point multiplication over GF (2163), field multiplications account for almost 62%
of the execution time. It is, therefore, justified to allocate a significant portion
of the available hardware resources to the multiplier. Parallel and overlapped
execution save more than 27% time compared to sequential execution. There is
still room for improvements since instructions BMZ, BEQ, SL, JMP and END
responsible for the flow control consume almost 21% of the execution time. This
time could be saved by separating control flow and data flow.

Unit LUTs FFs f[MHz]

Karatsuba Multiplier 9870 2688 52.2
LSD Multiplier 14347 2592 66.6

Shift-and-Add Multiplier 14241 2990 66.5
ALU 1345 279 80.4 (est.)
Divider 2678 1316 79.6 (est.)

Full Design 19508 6442 66.5

Table 3. Cost and Performance of
Arithmetic Units.

Instruction #Instr. Cycles ms

DIV 1 329 0.00495
ADD 333 666 0.01003
SQR 3 6 0.00009
MUL 10 60 0.00090
MULNR 1 7 0.00011
MUL + ADD 162 972 0.01464
MUL + SQR 810 4860 0.07319
ST 11 33 0.00050
LD 344 688 0.01036
BMZ 326 652 0.00982
BEQ 2 8 0.00012
JMP 162 324 0.00488
SL 326 978 0.01473
END 1 5 0.00008

total 9588 0.14440

Table 4. Decomposition of the Ex-
ecution Time for a GF (2163) Point
Multiplication.

To evaluate the performance of the divider, we implemented an inversion
algorithm proposed by Itoh and Tsujii [13] based on Fermat’s theorem. With this
algorithm, an inversion optimized for GF (2163) takes 938 cycles (0.01413 ms),
while the divider is almost three times faster speeding up point multiplication
by about 6.4%.

Table 5 shows hardware and software performance numbers for point mul-
tiplication on named and generic curves as well as execution times for ECDH
and ECDSA with and without hardware support. The hardware numbers were
obtained on a 360MHz Sun Ultra

�

60 workstation and all software numbers rep-
resent a generic 64-bit implementation measured on a 900MHz Sun Fire

�

280R
server. For generic curves, the execution time for point multiplications depends
on the irreducible polynomial as described in Sections 5.5 and 5.2. The obtained
numbers assume irreducible polynomials with k3 ≤

m−1
2 . Hard-wired reduction

for named curves improves the execution time by a factor of approximately 10
compared to generic curves.

For ECDH-163, the hardware accelerator offers a 12.5-fold improvement in
execution time over the software implementation for named curves. Overhead is
created by OpenSSL and accesses to the hardware accelerator leading to a lower
speedup than measured for raw point multiplication. A disproportionally larger
drop in speedup can be observed for ECDSA-163 since it requires two point
multiplications and one point addition executed in software. All numbers were
measured using a single process on one CPU. The hardware numbers for ECDH
and ECDSA could be improved by having multiple processes share the hardware
accelerator such that while one processes waits for a point multiplication to
finish, another process can use the CPU.

Hardware Software Speedup
ops/s ms/op ops/s ms/op

Named Curves
GF (2163) 6987 0.143 322 3.110 21.7
GF (2193) 5359 0.187 294 3.400 18.2
GF (2233) 4438 0.225 223 4.480 19.9
Generic Curves
GF (2163) 644 1.554 322 3.110 2.0
GF (2193) 544 1.838 294 3.400 1.9
GF (2233) 451 2.218 223 4.480 2.0
ECDH
GF (2163) 3813 0.235 304 3.289 12.5
ECDSA (sign)
GF (2163) 1576 0.635 292 3.425 5.4
ECDSA (verify)
GF (2163) 1224 0.817 151 6.623 8.1

Table 5. Hardware and Software Performance.

7 Conclusions

We have demonstrated a secure client/server system that employs elliptic curve
cryptography for the public-key operations in OpenSSL. We have further pre-
sented a hybrid hardware accelerator architecture providing optimized perfor-
mance for named elliptic curves and support for generic curves over arbitrary
fields GF (2m), m ≤ 255. Previous approaches such as presented in [11] and [20]
focused on only one of these aspects.

The biggest performance gain was achieved by optimizing field multiplica-
tion. However, as the number of cycles per multiplication decreases, the relative
cost of all other operations increases. In particular, squarings can no longer be
considered cheap. Data transport delays become more critical and contribute
to a large portion of the execution time. To make optimal use of arithmetic
units connected through shared data paths, overlapped and parallel execution
of instructions can be employed.

For generic curves, reduction has shown to be the most expensive opera-
tion. As a result, squarings become almost as expensive as multiplications. This
significantly impacts the cost analysis of point multiplication algorithms. In par-
ticular, the Itoh-Tsujii method becomes much less attractive since it involves a
large number of squaring operations.

Dedicated division circuitry leads to a performance gain over soft-coded in-
version algorithms for both named and generic curves. However, the tradeoff
between chip area and performance needs to be taken into account.

Although prototyped in reconfigurable logic, the architecture does not make
use of reconfigurability. It is thus well-suited for an implementation in ASIC
technology. For commercial applications this means lower cost at high volumes,
less power consumption, higher clock frequencies and tamper resistance.

As for future work, we are in the process of setting up a testbed that will allow
us to empirically study the performance of ECC-based cipher suites and compare
it to conventional cipher suites. This includes measurements and analysis of the
system performance at the web server level. As for the hardware accelerator,

we intend to improve the performance of point multiplication on generic curves.
Furthermore, we want to optimize the hardware-software interface to achieve
higher performance at the OpenSSL level. We plan to discuss the results in a
follow-on publication.

Acknowledgments

We would like to thank Jo Ebergen for suggesting to implement the divider with
counters rather than with comparators and Marc Herbert for his help with the
Solaris

�

driver.

References

[1] Agnew, G.B., Mullin, R.C., Vanstone, S.A.: An Implementation of Elliptic Curve Cryptosystems
Over F

2155
. In IEEE Journal on Selected Areas in Communications, 11(5):804-813, June 1993.

[2] Bednara, M., Daldrup, M., von zur Gathen, J., Shokrollahi, J., Teich, J.: Reconfigurable Imple-
mentation of Elliptic Curve Crypto Algorithms. Reconfigurable Architectures Workshop, 16th
International Parallel and Distributed Processing Symposium, April 2002.

[3] Blake, I., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography. London Mathematical So-
ciety Lecture Note Series 265, Cambridge University Press, 1999.

[4] Blake-Wilson, S., Dierks, T., Hawk, C.: ECC Cipher Suites for TLS. Internet draft,
http://www.ietf.org/internet-drafts/draft-ietf-tls-ecc-01.txt, March 2001.

[5] Blum, T., Paar, C.: High Radix Montgomery Modular Exponentiation on Reconfigurable Hard-
ware. To Appear in IEEE Transactions on Computers.

[6] Borodin, A., Munro, I.: The Computational Complexity of Algebraic and Numeric Problems.
American Elsevier, New York, 1975.

[7] Certicom Research: SEC 2: Recommended Elliptic Curve Domain Parameters. Standards for
Efficient Cryptography, Version 1.0, September 2000.

[8] Dierks, T., Allen, C.: The TLS Protocol - Version 1.0. IETF RFC 2246, January 1999.
[9] Ernst, M., Klupsch, S., Hauck, O., Huss, S.A.: Rapid Prototyping for Hardware Accelerated

Elliptic Curve Public-Key Cryptosystems. 12th IEEE Workshop on Rapid System Prototyping,
Monterey, CA, June 2001.

[10] Gao, L., Shrivastava, S., Lee, H., Sobelman, G.: A Compact Fast Variable Key Size Elliptic
Curve Cryptosystem Coprocessor. Proceedings of the Seventh Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, 1998.

[11] Goodman, J., Chandrakasan, A.P.: An Energy-Efficient Reconfigurable Public-Key Cryptogra-
phy Processor. In IEEE Journal of Solid-State Circuits, Vol. 36, No. 11, 1808-1820, November
2001.

[12] Halbutoǧulları, A., Koç, Ç.K.: Mastrovito Multiplier for General Irreducible Polynomials. In
IEEE Transactions on Computers, Vol. 49, No. 5, 503-518, May 2000.

[13] Itoh, T., Tsujii, S.: A Fast Algorithm for Computing Multiplicative Inverses in GF (2m) Using
Normal Bases. In Information and Computation, 78:171-177, 1988.

[14] Karatsuba, A., Ofman, Y.: Multiplication of Many-Digital Numbers by Automatic Computers.
Doklady Akad. Nauk, SSSR 145, 293-294. Translation in Physics-Doklady 7, 595-596, 1963.

[15] Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation, 48:203-209, 1987.
[16] López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m) without precompu-

tation. In CHES ’99 Workshop on Cryptographic Hardware and Embedded Systems, Springer-
Verlag, Lecture Notes in Computer Science 1717, August 1999.

[17] Miller, V.: Uses of elliptic curves in cryptography. In Lecture Notes in Computer Science 218:
Advances in Crytology - CRYPTO ’85, pages 417-426, Springer-Verlag, Berlin, 1986.

[18] U.S. Department of Commerce / National Institute of Standards and Technology: Digital Signa-
ture Standard (DSS), Federal Information Processing Standards Publication FIPS PUB 186-2,
January 2000.

[19] See http://www.openssl.org/.
[20] Orlando, G., Paar, C.: A High-Performance Reconfigurable Elliptic Curve Processor for

GF (2m). In CHES ’2000 Workshop on Cryptographic Hardware and Embedded Systems,
Springer-Verlag, Lecture Notes in Computer Science 1965, August 2000.

[21] Chang Shantz, S.: From Euclid’s GCD to Montgomery Multiplication to the Great Divide.
Sun Microsystems Laboratories Technical Report TR-2001-95, http://research.sun.com/, June
2001.

[22] Song, L., Parhi, K.K.: Low-Energy Digit-Serial/Parallel Finite Field Multipliers. In IEEE Jour-
nal of VLSI Signal Processing Systems 19, 149-166, 1998.

Sun, Sun Microsystems, the Sun logo, Solaris Operating Environment, Ultra and Sun Fire are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

