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Abstract. A one-time program is a hypothetical device by which a user
may evaluate a circuit on exactly one input of his choice, before the device
self-destructs. One-time programs cannot be achieved by software alone,
as any software can be copied and re-run. However, it is known that
every circuit can be compiled into a one-time program using a very basic
hypothetical hardware device called a one-time memory. At first glance it
may seem that quantum information, which cannot be copied, might also
allow for one-time programs. But it is not hard to see that this intuition is
false: one-time programs for classical or quantum circuits based solely on
quantum information do not exist, even with computational assumptions.

This observation raises the question, “what assumptions are required to
achieve one-time programs for quantum circuits?” Our main result is that
any quantum circuit can be compiled into a one-time program assuming
only the same basic one-time memory devices used for classical circuits.
Moreover, these quantum one-time programs achieve statistical universal
composability (UC-security) against any malicious user. Our construc-
tion employs methods for computation on authenticated quantum data,
and we present a new quantum authentication scheme called the trap
scheme for this purpose. As a corollary, we establish UC-security of a
recent protocol for delegated quantum computation.

? © IACR 2013. This article is a minor revision of the version published by Springer-
Verlag available at http://dx.doi.org/10.1007/978-3-642-40084-1_20.

http://dx.doi.org/10.1007/978-3-642-40084-1_20


1 Introduction

A one-time program (OTP) for a function f , as introduced by Goldwasser, Kalai,
and Rothblum [1], is a cryptographic primitive by which a user may evaluate f
on only one input chosen by the user at run time. (See also Refs. [2,3] for sub-
sequent improvements.) No adversary, after evaluating the one-time program
on x, should be able to learn anything about f(x′) for any x′ 6= x beyond what
can be inferred from f(x). One-time programs cannot be achieved by software
alone, as any classical software can be re-run. Thus, any hope of achieving any
one-time property must necessarily rely on an additional assumptions such as
secure hardware or quantum mechanics: computational assumptions alone do
not suffice.

Classically, it has been shown [1,2,3] how to construct a one-time program for
any function f using a hypothetical hardware device called a one-time memory
(OTM). An OTM is non-interactive idealization of oblivious transfer: it stores
two secret strings (or bits) s0, s1; a receiver can specify a bit c, obtain sc, and
then the OTM self-destructs so that sc is lost forever. OTMs are an attractive
minimal hardware assumption: their specification is independent of any specific
function f , so they could theoretically be mass-produced.

OTPs are a special form of non-interactive secure two-party computation [3],
in which two parties evaluate a publicly known function f(x, y) as follows: the
sender uses her input string x to prepare a program p(x) for the receiver, who
uses this program and his input y to compute f(x, y). A malicious receiver
should not be able to learn anything about f(x, y′) beyond what can be inferred
from f(x, y), for any y′. We use the term “OTP” interchangeably with “non-
interactive secure two-party computation”.

In this extended abstract we study quantum one-time programs (QOTPs), in
which the sender and receiver evaluate a publicly known channel Φ : (A,B)→ C
specified by a quantum circuit acting on registers A (the sender’s input), B (the
receiver’s input), and C (the receiver’s output). The security goal is similar in
spirit to that for classical functions: for each joint state ρ of the input registers
(A,B), a malicious receiver should not be able to learn anything about Φ(ρ′)
beyond what can be inferred from Φ(ρ), for any ρ′.

Can quantum one-time programs be constructed? If so, how? If not, why not,
and under what additional assumptions can they be achieved? QOTPs, if they
do exist, would be useful for a variety of secure quantum computation tasks,
such as providing copy protection of software [4] and implementing verification
for quantum coin schemes [5]. (Note that QOTPs are different from the task of
program obfuscation, which is known to be impossible classically [6] but remains
an open question quantumly.)

Our main contributions are as follows: (i) We present a universally compos-
able QOTP protocol for any quantum channel, assuming only the same single-bit
one-time memories used in classical OTPs. Our protocol employs quantum com-
putation on authenticated data (QCAD), a technique of independent interest in
quantum cryptography. (ii) We present a new quantum authentication scheme
called the trap scheme and show that it allows for QCAD. (iii) We identify



pathological classes of “unlockable” classical functions and quantum channels
that admit trivial OTPs without any hardware assumptions. The remainder of
this section elaborates upon these contributions.

1.1 Quantum one-time programs from classical one-time memories

Unlike ordinary classical information, quantum information cannot in general be
copied. This no-cloning property prompts one to ask: does quantum information
allow for one-time programs without hardware assumptions? (When there are
no hardware assumptions, we refer to this as the plain quantum model.)

For both classical functions and quantum channels, a moment’s thought re-
veals a negative answer to this question: for any function f or channel Φ, a
quantum “program state” for f or Φ can always be re-constructed by a re-
versible receiver after each use to obtain the evaluation of f or Φ on multiple
distinct inputs. Computational assumptions do not help.

Given that one-time programs do not exist for arbitrary quantum channels
in the plain quantum model, and that one-time programs do exist for arbitrary
classical functions assuming secure OTMs, we ask: what additional assumptions
are required to achieve one-time programs for quantum channels? Our main
result answers this question.

Theorem 1 (Main result, informal). For each channel Φ : (A,B)→ C spec-
ified by a quantum circuit there is a non-interactive two-party protocol for the
evaluation of Φ, assuming classical one-time memory devices. The run time of
this protocol is polynomial in the size of the circuit specifying Φ and the proto-
col achieves statistical quantum universal composability (UC-security) against a
malicious receiver.

Since all communication is one-way from sender to receiver, a malicious
sender cannot learn anything about the receiver’s portion of the input state ρ.
The question of security against a malicious sender who tries to convince the
receiver to accept an output state other than Φ(ρ) is left for future work. We
restrict our attention to the case of non-reactive quantum one-time programs.
The more general scenario of bounded reactive programs which can be queried
a bounded number of times (including the case of an n-use program) may be
implemented using standard techniques as is done in the classical case. Most
of the components of our QOTP for Φ are independent of the sender’s input
register A and so can be compiled by the sender before she receives her input.
As a corollary of our main result we obtain the UC-security of the protocol for
delegated quantum computations (DQC) from Ref. [7]. Composable security for
other variants of DQC was independently studied in Ref. [8].

1.2 A new authentication scheme that admits universal
computation

Our protocol employs a method for quantum computation on authenticated data
(QCAD), which refers to the application of quantum gates to authenticated



quantum data without knowing the authentication key. We propose a new au-
thentication scheme, called the trap scheme, and show that it allows for QCAD.
Our trap scheme also seems to provide a concrete and efficient realization of the
“hidden subspaces” used in the public-key quantum money scheme of Ref. [9].

Prior to our work, the only authentication scheme known to admit QCAD
was the signed polynomial scheme [10,7]. Recently, and independently of our
work, it was shown in Ref. [11] that the Clifford authentication scheme can be
used to authenticate two-party quantum computations. However, that protocol
requires two parties to process quantum information and so cannot be used for
QCAD or QOTPs.

Our QOTP protocol calls for the receiver to use QCAD to apply the gates of Φ
to the authenticated input registers (A,B). In general, QCAD can only be per-
formed if the receiver (who holds the authenticated data) is allowed to exchange
classical messages with the sender (who knows the authentication key). To keep
our protocol non-interactive, all the classical interaction is encapsulated by a
bounded, reactive classical one-time program (BR-OTP) prepared by the sender,
the existence of which follows straightforwardly from the work of Ref. [3] and is
described in detail in the full version of this extended abstract [12]. This program
for the BR-OTP depends upon the authentication key chosen for the sender’s
input register, but not on the contents of that register. By selecting this key in
advance, the BR-OTP can be prepared before the sender gets his input register.

To implement QCAD, the receiver’s input must be authenticated prior to
computation. This is accomplished non-interactively by having the sender pre-
pare a pair of registers in a special “teleport-through-encode” state. The authen-
tication key is determined by the (classical) result of the Bell measurement used
for teleportation. The receiver non-interactively de-authenticates the output at
the end of the computation by means of a special “teleport-through-decode”
state, also prepared by the sender. In order to successfully de-authenticate, the
receiver’s messages to the BR-OTP must be consistent with the secret authen-
tication key held by the BR-OTP. Otherwise, the BR-OTP simply declines to
reveal the final decryption key for the receiver’s output.

1.3 Unlockable functions and channels

Curiously, our study has uncovered pathological classes of functions and chan-
nels that can never be made into a one-time program. For example, the function
f : (x, y) 7→ x+y cannot have a one-time program because a receiver can use his
knowledge of y to deduce x from f(x, y). Once he has deduced x, the receiver is
free to evaluate f(x, y′) for any y′ of his choosing. This function is an example
of what we call an unlockable function. Technically, it is incorrect to say that
such a function can never be made into a one-time program. Rather, such func-
tions admit trivial one-time programs in the plain model—a technicality arising
from the standard simulation-based definition of security. This phenomenon is
somewhat akin to trivially obfuscatable functions [6].

We propose a definition of unlockability and prove that a classical function
or quantum channel admits a one-time program in the plain quantum model if



and only if it is unlockable, implying that no “useful” function or channel admits
a one-time program without any hardware assumptions.

2 Security of quantum one-time programs

Intuitively, a QOTP for a channel Φ is secure if anything that any (possibly
cheating) receiver could learn by processing the program state prepared by the
sender could also be learned by interacting with a simulator that uses only one-
time access to an idealized black box for Φ. Thus, no receiver can learn anything
beyond what can be inferred from this ideal functionality for Φ.

Formally, we define security in the quantum UC framework as defined by
Unruh [13]. Our main ideal functionality, FOTP

Φ , is specified in Functionality 1
and involves two parties, the sender and the receiver. The functionality may
exist in multiple instances and involve various parties.4

Functionality 1 Ideal functionality FOTP
Φ for a quantum channel

Φ : (A,B)→ C

1. Create: Upon input register A from the sender, send create to the receiver and
store the contents of register A.

2. Execute: Upon input register B from the receiver, evaluate Φ on registers A,B
and send the contents of the output register C to the receiver. Delete any trace of
this instance.

The map Φ that is computed is a public parameter of the functionality and
it takes an input from the sender and an input from the receiver, so FOTP

Φ hides
the sender’s input only. If the intention is to hide the map Φ itself—as in the
intuitive notion of one-time programs—then we can consider a universal map U
that takes as part of the sender’s input a representation of Φ (see [14,15,16]).
Sometimes we emphasize the fact that the ideal functionality may be called
only a single time by saying “one-shot access to an ideal functionality for Φ”.
The functionality FOTP

Φ is sender-oblivious since it delivers the result of the
functionality to the receiver but not the sender.

We now give some intuition on how the notions of UC translate to the context
of QOTPs.

Functionality. A non-interactive protocol for evaluation of a channel Φ : (A,B)
→ C consists of (i) an encoding channel enc : A → P applied by the sender

on its input A that prepares a program state P, and (ii) a decoding channel
dec : (P,B)→ C applied by the receiver on the program state P and its input B
such that dec ◦ enc and Φ are indistinguishable.

4 Formally, instances are denoted by session identifiers and each instance involves
labelled parties. For simplicity, we have omitted these identifiers as they are implicit
from the context.



When P consists solely of a quantum register, we call this the plain quantum
model. In the bounded reactive OTP-quantum-hybrid model, the program state is
a quantum register P augmented with one or more BR-OTPs. (For our construc-
tion, it suffices to consider a single BR-OTP.) In this setting, the actions of any
receiver (honest or otherwise) can be viewed as the serialization of a multi-round
“interaction” in which the first message consists of the quantum registers from
the sender and subsequent messages consist of purely classical data exchanged
with the BR-OTP.

Security. By the completeness of the dummy-adversary [13], in order to show se-
curity, it suffices to consider only the adversary that relays messages between the
environment and the honest parties (we can see the environment as performing
the attack). Thus, security of a non-interactive protocol for the evaluation of Φ in
the BR-OTP-quantum-hybrid model corresponds to the existence of a simulator
that can mimic the sender’s message, combined with the interactive behaviour
of the BR-OTP, using only one-shot, black-box access to Φ with register A fixed.

A key result of Unruh [13] is the quantum lifting theorem which estab-
lishes that, in the statistical case, classical-UC-secure protocols are quantum-UC-
secure. We apply this result to the protocol of Goyal, Ishai, Sahai, Venkatesan,
and Wadia [3], which establishes statistically classical-UC-secure one-time pro-
grams in the OTM-hybrid model (i.e., assuming one-time memories); by quan-
tum lifting, this protocol is also statistically quantum-UC-secure and hence we
can use it our construction. Ideal functionalities for OTMs, OTPs, and BR-
OTPs, as well as a proof extending Goyal et al.’s result for OTPs to BR-OTPs,
appear in the full version [12].

3 The trap authentication scheme

In this section we present a new quantum authentication scheme called the trap
scheme and argue that it admits quantum computation on authenticated data
(QCAD). A quantum authentication scheme consists of procedures for encoding
and decoding quantum information with a secret classical key k such that an ad-
versary with no knowledge of k who tampers with encoded data will be detected
with high probability. Quantum authentication codes were first introduced by
Barnum, Crépeau, Gottesman, Smith and Tapp [17].

3.1 Trap codes yield a secure authentication scheme

Our trap scheme is based on any fixed quantum error-detecting code C that
encodes one logical qubit into n physical qubits with distance d (an [[n, 1, d]]-
code). Each such code induces a different trap scheme. Authentication and de-
authentication operations for the trap scheme based on a code C are specified
in Protocol 1.

The trap scheme is an example of a class of authentication schemes that
we call encode-encrypt schemes, owing to a two-step authentication process of



Protocol 1 Authentication and de-authentication for the trap scheme based on
an [[n, 1, d]]-code C

Classical key. A pair (π, P ) consisting of a permutation π on 3n elements and a
(description of a) 3n-qubit Pauli operator P .

Authentication. Input: one qubit. Output: 3n qubits.
1. Encode the data qubit under C, producing an n-qubit register.
2. Introduce two new n-qubit trap registers in states |0〉⊗n, |+〉⊗n, respectively.
3. Permute all 3n qubits according to π.
4. Encrypt all 3n qubits by applying P .

De-authentication. Input: 3n-qubits. Output: one qubit and “accept”; or “reject”.
1. Decrypt all 3n qubits by applying P .
2. Permute all 3n qubits according to π−1.
3. Decode the data qubit under C.
4. Measure the trap registers to ensure they are in their proper states. If these

measurements succeed and if C indicated no error syndrome then “accept”
and output the data qubit, otherwise “reject”.

encoding followed by encryption. Encode-encrypt schemes have many desirable
properties, chief among them the fact that an arbitrary attack on such a scheme is
equivalent to a probabilistic mixture of Pauli attacks on the underlying family E
of codes. Thus, by the encode-encrypt mechanism, in order to construct a secure
quantum authentication scheme it suffices to exhibit a family E of codes that is
secure against Pauli attacks.

In the trap scheme, the family E consists of all codes obtained by permuting
data encoded under C together with registers in states |0〉⊗n, |+〉⊗n. We call E
a family of trap codes. The first use of these codes was implicit in the Shor–
Preskill security proof for quantum key distribution [18]. (See also Ref. [19].) We
establish security of this family against Pauli attacks, from which the security
of the trap scheme follows.

Proposition 1 (Security of trap codes against Pauli attacks). The fam-
ily E of trap codes based on a code of distance d is (2/3)d/2-secure against Pauli
attacks.

That is, for each fixed choice of 3n-qubit Pauli operation Q it holds that the
probability—taken over a uniformly random choice of code E ∈ E —that Q acts
nontrivially on logical data and yet has no error syndrome is at most (2/3)d/2.

See the full version [12] for proofs of Proposition 1 and several other properties
of encode-encrypt schemes.

3.2 The trap scheme admits quantum computing on authenticated
data

Authentication schemes that also allow for QCAD—the implementation of a
universal set of quantum gates on authenticated data without knowing the key—
hold great promise for a host of cryptographic applications. In this section we



argue that the trap scheme allows for QCAD for appropriate choices of the
underlying code C.

It helps to think of two parties: a trusted verifier who prepares authenticated
data with secret classical key k and a malicious attacker who is to act upon the
authenticated data without knowledge of k. The goal is to construct a scheme
with the property that for each gate G belonging to some universal set of gates
there exists a gadget circuit G̃ that the attacker can apply to authenticated data
so as to implement a logical G. Furthermore, we require that the gadget G̃ be
independent of the choice of classical key k so that it may be implemented by
an attacker without knowledge of k.

Normally, any non-identity gadget G̃ would invalidate the authenticated
state. We therefore require a scheme which allows the verifier to validate the
state again simply by updating the classical key k 7→ k′. Moreover, by updating
the key in this way the verifier effectively forces the attacker to apply the desired
gadget G̃ as otherwise the state would fail verification under the updated key k′.

Following the example of the polynomial scheme of Ben-Or et al. [10], gadget
design for our trap scheme is inspired by methods for fault-tolerant quantum
computation. In the full version [12] we present gadgets for the universal gate
set consisting of Pauli gates, controlled-NOT, Hadamard, i-shift phase K : |a〉 7→
ia|a〉, and π/8-phase T : |a〉 7→ eaiπ/4|a〉.

Some gates, such as the controlled-NOT, admit straightforward bitwise gad-
gets. Others, such as the π/8 gate, require authenticated “magic states” and
the ability to measure authenticated data in the computational basis. For these
gadgets the verifier must interpret the classical measurement result for the at-
tacker so that he may complete the gadget. Thus, these gadgets require classical
interaction between verifier and attacker.

Our gadgets require that the underlying code C allow bitwise implementation
of logical controlled-NOT and Hadamard gates—that is, that C be a self-dual
CSS code. For a concrete example, it suffices that C be the seven-qubit Steane
code nested a sufficient number of levels so as to achieve distance d.

4 Protocol for quantum one-time programs

In this section we present our protocol for quantum one-time programs in the
quantum BR-OTP hybrid model. In particular, we specify how an honest sender
prepares her quantum registers and BR-OTP for the receiver and how an honest
receiver should use these objects to recover the action of Φ. The protocol requires
an encode-encrypt scheme that admits QCAD such as the trap scheme presented
in Section 3, but is completely independent of the specific choice of scheme.

We assume without loss of generality that the channel Φ has the form Φ :
(A,B) → B so that the receiver’s output register C ∼= B has the same size
as the input register and that Φ is specified by a unitary circuit U acting on
registers (A,B,E). The extra register E is an auxiliary register initialized to the
|0E〉 state. The action of Φ is recovered from U by discarding registers (A,E) so
that Φ : ρ 7→ TrAE(U (ρ⊗ |0E〉〈0E|)U∗).



Given a circuit U one can efficiently find a circuit for the controlled-U oper-
ation, which we denote c-U . This circuit acts on registers (A,B,E) plus an extra
control qubit, which we bundle into the auxiliary register E for convenience. Our
protocol calls for the receiver to apply c-U to authenticated data with the con-
trol qubit always initialized to the |on〉 state. The purpose of this technicality
is to better facilitate the proof of security. We also have an alternate protocol
in which logical U is implemented directly with no need for c-U . However, the
security proof for this alternate protocol is more technically cumbersome than
our protocol for c-U , so we have elected to present only the protocol for c-U in
this extended abstract.

4.1 Protocol for an honest sender

Let r be the number of gates in c-U that require magic states. After the parties
have received their input registers A,B, a non-interactive protocol for c-U con-
sists of a single message from the sender to the receiver containing the following
objects:

1. Quantum registers Ã,Bin, B̃in,Bout, B̃out, Ẽ, M̃ = (M̃1, . . . , M̃r).
2. An (r + 1)-round BR-OTP.

The sender prepares these objects as specified in Protocol 2 and Figure 1.

(a) Teleport-through-authentication

|φ+〉
Bin

E

D

X

Z

|0〉

|0〉

PB̃in B̃in

(b) Teleport-through-de-authentication

|φ+〉

B̃out

E∗ PB̃out

Bout

syndrome

registers

discarded

Fig. 1. Circuits for teleporting through authentication and de-authentication. Here
the Pauli operations PB̃in

, PB̃out
refer to the portions of P acting on registers B̃in, B̃out,

respectively.



Protocol 2 Message preparation for an honest sender

Secret classical key. Authentication key for registers (Ã, B̃in, B̃out, Ẽ, M̃). In particular,
a random pair (E,P ) consisting of a code E ∈ E and Pauli P acting on these registers.

Registers prepared by the sender. Given the input register A the sender prepares
the following registers:

(Bin, B̃in): Teleport-through-authentication state of Figure 1(a).

(B̃out,Bout): Teleport-through-de-authentication state of Figure 1(b).

Ã: Authenticated input register A.

Ẽ: Authenticated ancilla in logical state |0〉|on〉.
M̃: Authenticated ancilla in logical state |µ〉 = |µ1〉 · · · |µr〉 where

|µ1〉, . . . , |µr〉 are the r magic states required for c-U .

BR-OTP prepared by the sender.

1. Receive (a classical description of) a purported teleport-through-authentication
correction Pauli T in.

2. For i = 1, . . . , r:
(a) Receive a classical bit string ci—a purported measurement result of the ith

authenticated magic state register M̃i.
(b) Decode ci into a classical bit ai as dictated by T in and the authentication

key (E,P ). If the decoding process indicates a non-zero error syndrome then
cheating has been detected. Return the decoded bit ai to the user.

3. Receive a purported teleport-through-de-authentication correction Pauli T out. If
cheating was never detected in step 2b then return a decryption Pauli Ŝ. Otherwise
return random bits.

4.2 Protocol for an honest receiver

An honest receiver can recover Φ(ρ) from an honest sender’s message as specified
in Protocol 3.

5 Simulator and proof of UC security

The simulator must not pre-process the sender’s input register A. Instead, the
simulator is permitted only one-shot, black-box access to the “ideal functional-
ity” for Φ. We represent this ideal functionality by a single call to an oracle for U
acting on registers (A,B,E) prepared by the simulator. The rules for permissible
preparation and disposal of these registers are as follows:

1. The simulator must pass the input register A directly to U without any
pre-processing.

2. The simulator must prepare the ancillary register E in pure state |0〉.
3. Upon receiving the output registers (A,B,E) from the oracle for U , the sim-

ulator must discard registers A,E without any post-processing.

The simulator is specified in Protocol 4. The main idea is that our simulator will
use the control qubit contained in register Ẽ to “switch off” the application of U



Protocol 3 Protocol for an honest receiver
1. Perform a Bell measurement on (B,Bin) so as to teleport-through-authentication.

Let T in be the correction Pauli indicated by this measurement. Send T in as the first
message to the BR-OTP. [At this time the contents of B have been authenticated
and placed in register B̃in.]

2. Apply a logical c-U to the authenticated registers (Ã, B̃in, Ẽ, M̃). Explicitly:
(a) Apply the gates of c-U occurring before the first magic state measurement.
(b) For i = 1, . . . , r:

i. Measure the ith magic state register in the computational basis and send
the result to the BR-OTP.

ii. The BR-OTP provides a single bit indicating the proper correction.
iii. Apply the gates of c-U occurring after the ith magic state measurement

but before the (i+ 1)th magic state measurement.
[The implementation of c-U is now complete. At this time the register (Ã, B̃in, Ẽ)
holds the authenticated version of (A,B,E) with c-U applied.]

3. Perform a Bell measurement on (B̃in, B̃out) so as to teleport-through-de-
authentication. Let T out be the correction Pauli indicated by this measurement.
Send T out as the final message to the BR-OTP. [At this time the register Bout holds
the receiver’s output. This register is encrypted but not authenticated.]

4. For its final output, the BR-OTP provides the Pauli decryption key Ŝ. Apply this
Pauli to Bout to recover the output of Φ.

that would have been implemented by an honest receiver. Instead, the black-
box call to the ideal functionality will be embedded at the proper time so as to
recover the required action of U . An additional teleportation step is required so
that our simulator can embed U at the proper time.

We now sketch a proof that the simulator of Protocol 4 certifies the se-
curity of the QOTP protocol presented in Section 4. We begin with a formal
re-statement of Theorem 1 in the language of UC-security. Details appear in the
full version [12].

Theorem 2 (Main theorem, formal). For each channel Φ : (A,B) → C
specified by a quantum circuit, there is an efficient, non-interactive, quantum
protocol in the OTM-hybrid model that statistically quantum-UC-emulates FOTP

Φ

against a malicious receiver.

Proof (sketch). As discussed in Section 2, UC-security of our protocol is estab-
lished by proving that that no entity (or environment) could possibly distinguish
an interaction with our simulator from an interaction with a real sender. We
employ a highly technical, “brute-force” approach to this end. In particular, we
begin by writing down a general form that every environment must have. From
such a description we derive an expression for the final state of all the registers
in the environment’s possession at the end of an interaction with a real sender.
We perform a similar analysis for the environment’s final state at the end of
an interaction with our simulator. Finally, we argue that these two final states
are statistically indistinguishable—that is, the trace distance between them is
proportional to the security parameter of the underlying encode-encrypt scheme



Protocol 4 Simulator

Secret classical key. Authentication key (E,P ) for registers (Ã, B̃in, B̃out, Ẽ, M̃) as in
Protocol 2.

Registers prepared by the simulator. Given the input register A, the simulator
constructs the following registers:

(Bin, Sin): Simple EPR pairs |φ+〉 for teleportation.

(Sout, B̃in): Teleport-through-authentication state of Figure 1(a).

(B̃out,Bout): Teleport-through-de-authentication state of Figure 1(b).

Ã: Authenticated dummy input register in logical state |0〉.
Ẽ: Authenticated dummy ancillary register in logical state |0〉|off〉.
M̃: Authenticated magic states as in Protocol 2.
E : To be used in the call to the ideal functionality. Ancillary register in state

|0〉.

Execution of the simulator.

1. Send the registers Bin, B̃in, B̃out,Bout, Ã, Ẽ, M̃ to the environment.
2. The environment responds with a Pauli T in. Apply T in to register Sin. Then use

the ideal black-box to apply U to (A, Sin,E).
3. Perform a Bell measurement on (Sin, Sout) so as to teleport the contents of Sin

through authentication and place the result in B̃in. Let T sim denote the teleportation
Pauli indicated by this measurement.

4. Execute the BR-OTP of Protocol 2 under the assumption that T sim was received
in the first round.

upon which our protocol is based. (For example, if the trap scheme built on a
code of distance d is used with our protocol then this trace distance is exponen-
tially small in d.) ut

6 Impossibility of non-trivial OTPs in the plain model

In this section we propose a definition of unlockability for quantum channels,
from which a definition for classical functions arises as a special case. We then
prove that a channel Φ admits a one-time program in the plain quantum model
if and only if Φ is unlockable, from which it follows that a classical function
f admits a one-time program in the plain classical model if and only if f is
unlockable.

Specifically, our possibility result (Theorem 3) is that every unlockable chan-
nel admits a trivial one-time program in the plain quantum model, and in fact
that this protocol is UC-secure. Conversely, our impossibility result (Theorem 4)
is that every channel that is not unlockable does not admit a one-time program
in the plain quantum model. This impossibility result holds even if we relax to
an approximate case or allow computational assumptions.5

5 Although our impossibility result is stated in the UC framework, the impossibility is
not an artifact of the high security required by UC, but seems inherent in the notion
of OTPs, and the impossibility argument applied for any relaxation we attempted.
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Fig. 2. A channel Φ is unlockable if there exists a key state ξ0 and a recovery algorithm
A that allows computation of Φ(ρ) for any ρ.

6.1 Definition of unlockability

Informally, a function or channel is unlockable if there is a key6 input for the
receiver that unlocks enough information to fully simulate the map.

Definition 1 (Unlockable channel). A channel Φ : (A,B)→ C is unlockable
if there exists a register K, a key state ξ0 of (B,K) and a recovery algorithm
(i.e., channel) A : (C,K,B) → C with the property that A ◦ (Φ0 ⊗ 1B) ≈ Φ,
where the channel Φ0 is specified by Φ0 : A → (C,K) : ρA 7→ (Φ⊗ 1K)(ρA ⊗ ξ0).
Here, ≈ can denote perfect, statistical, or (for polynomial-time uniform families
of channels {Φn}) computational indistinguishability; in all cases, the channels
Φ0 and A must have circuits of size polynomial in the size of the circuit for Φ.
See Figure 2 for a graphical depiction of unlockability.

For completeness let us note that, in the classical case, a function f : A ×
B → C is unlockable if there exists a key input b0 ∈ B and a recovery al-
gorithm A : C × B → C such that, for all a ∈ A and b ∈ B, it holds that
f(a, b) = A(f(a, b0), b). Intuitively, an unlockable classical function admits an
algorithm that can compute all values of f(a, ·) given a one-time program for
f(a, ·). But this is okay because a simulator given one-shot oracle access to f(a, ·)
can also compute f(a, b) for all b: this function is “learnable” in one shot and so
a simulator can do everything any algorithm can.

Simple examples of unlockable channels include all unitary channels of the
form Φ : X 7→ UXU∗ for some unitary U and all constant channels of the form
Φ : X 7→ Tr(X)σ for some fixed state σ. Simple examples of unlockable functions
include permutations.

6.2 Trivial one-time programs for unlockable channels

We can now see that unlockable channels have OTPs; but trivially so.

Theorem 3 (OTPs for unlockable channels). Let Φ : (A,B) → C be a
channel specified by a circuit. If Φ is unlockable then there exists an efficient, non-
interactive protocol which quantum-UC-emulates FOTP

Φ in the plain quantum
model. This holds in the perfect, statistical and computational cases.

6 Note we use “key” not in the cryptographic sense of a secret key, but in the metaphor-
ical sense of something that unlocks a lock.



Proof (sketch). The protocol is simple: to prepare the program register, the
sender applies Φ to his input register A and the B-portion of the key state
ξ0. The receiver can recover the action of Φ simply by applying the recovery
algorithm A to his input register B and the program register received from the
sender.

In order to show that this protocol is secure it suffices to exhibit a simulator
that can re-create the sender’s program state using only the ideal functionality
for Φ. But this is easy: the simulator can produce this state exactly as the real
sender would—by using the ideal functionality to apply Φ to the environment’s
input register A and the simulator’s B-portion of the key state ξ0.

Theorem 3 is in the quantum setting; it follows from the proof that if Φ is a
classical channel then the resulting protocol is a purely classical protocol.

6.3 Impossibility of one-time programs for arbitrary channels

Having seen that unlockable channels admit one-time programs in the plain
quantum model, we now show the converse—that every channel which admits a
one-time program must be unlockable.

Theorem 4 (Channels that admit OTPs are unlockable). Let Φ : (A,B)→
C be a channel specified by a circuit and suppose that Φ admits an efficient, non-
interactive quantum protocol which quantum-UC-emulates FOTP

Φ in the plain
quantum model. Then Φ is unlockable. This holds in the perfect, statistical and
computational cases.

Proof (sketch). Because Φ has a one-time program there must be a simulator
that can reproduce the program state using only the ideal functionality for Φ
applied to the sender’s input register A. Any such simulator has the following
form: (i) prepare a state ξ, (ii) apply Φ to A and the B-portion of ξ, (iii) post-
process the result by applying some channel A. It follows that Φ is unlockable
with key state ξ and recovery algorithm A.

For classical functions, an alternate intuition for this impossibility result can
be found by considering rewinding. Any correct one-time program state ρx for a
classical function f(x, ·) must result in the receiver obtaining an output state ρx,y
that is (almost) diagonal in the basis in which the receiver measures it, because
the measurement of ρx,y results in f(x, y) with (almost) certainty. As a result,
measurement does not disturb the state (much), so the receiver can reverse the
computation to obtain (almost) the program state again, and then rerun the
computation to obtain (close to) f(x, y′) for a different y′. It is possible to give
a proof for impossibility of OTPs for classical functions in the plain quantum
model using this rewinding argument. Impossibility for classical functions also
follows as a special case of the impossibility shown in Ref. [20].



7 UC-security of delegated quantum computations

Several protocols have been designed to allow a computationally weak client to
interface with a quantum computer in order to remotely accomplish a quan-
tum computation while maintaining privacy of the user’s input [21,19,7]. These
works, however, do not consider composability. (Recently, Dunjko, Fitzsimons,
Portmann and Renner [8] showed the composability of the blind quantum com-
puting protocol of Ref. [19].)

In this section we show that our main proof technique can be used to estab-
lish the statistical quantum-UC security of a family of protocols for delegated
quantum computations, closely related to the protocol of Aharonov et al. [7].
Originally studied in the context of quantum interactive proof systems, the pro-
tocol of Aharonov et al., which provides a mechanism to ensure both privacy of
the user’s input and verifiability of the computation, was not originally shown
to be secure according to any rigorous cryptographic security definition.

We generalize the protocol of Aharonov et al. to support delegated quan-
tum computation (in contrast to only deciding membership in a language) by
making two minor modifications. First we instantiate the protocol using any
encode-encrypt quantum authentication scheme that admits computing on au-
thenticated data (such as the trap scheme or the signed polynomial scheme as
used by Aharonov et al.). Analogously to our main protocol, we also introduce
as an aid in the proof a control bit so that the circuit being implemented is a
controlled-unitary.

The ideal functionality we achieve is described in Functionality 2. Follow-
ing [7], we describe the functionality in terms of a prover and verifier.

Functionality 2 Ideal functionality Fdelegated
Φ for a quantum channel Φ : A→ C

1. Create: Upon input register A from the verifier, send create to the prover and
store the contents of register A.

2. Execute: The prover provides an input in {execute, abort}. Upon input execute,
evaluate Φ on register A, and send the contents of the output register C to the
verifier; upon input abort, output ⊥ to the verifier.

Theorem 5. Let Φ be a channel specified by a circuit. There exists an efficient
quantum interactive protocol in the plain model that statistically quantum-UC-
emulates Fdelegated

Φ against a malicious prover. Furthermore, the only quantum
power required of the verifier is to encode the input and auxiliary quantum regis-
ters and to decode the output. In particular, all the interaction is classical except
for the first and last messages.

The proof of Theorem 5 follows as a special case of our main result about
QOTPs (Theorem 2). In the case of a general Φ, the registers that the verifier
prepares in Theorem 5 are polynomial-size in the security parameter. In the



interactive proof scenario of Aharonov et al., the input to Φ is the all-|0〉 product

state, the output is a single classical bit, and it suffices to implement Fdelegated
Φ

with only constant security. Given these assumptions, the only quantum power
required of the verifier is the ability to prepare constant-sized quantum registers
in the first round.
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